Silver(I)-Catalyzed Reaction between Pyrazole and Propargyl Acetates: Stereoselective Synthesis of the Scorpionate Ligands (E)-Allyl-gem-dipyrazoles (ADPs)

M. Bhanuchandra, Malleswara Rao Kuram, and Akhila K. Sahoo*

School of Chemistry, University of Hyderabad, Hyderabad 500046, India

Supporting Information

ABSTRACT: The reaction between readily accessible pyrazole and propargyl acetates in the presence of Ag(I) catalyst yielded a new class of (*E*)-allyl-*gem*-dipyrazole scorpionate ligands: 1-aryl-2-*N*-pyrazolyl allyl acetates and 1,3-dipyrazolyl-3-arylpropene. The reaction showed broad substrate scope, and various functional and protecting groups were tolerated under the reaction conditions. The palladium(II) scorpionate complex could thus be easily prepared and successfully employed in Suzuki–Miyaura cross-couplings in water.

INTRODUCTION

Propargyl alcohols readily undergo nucleophilic substitution because of the presence of hydroxyl and alkyne functionalities and hence can be used for the facile construction of complex molecular frameworks.¹ The reaction between 1-substituted propargyl acetate and NH-heteroarenes allows for the formation of (1) propargyl heteroarenes through substitution of the hydroxyl group and its derivatives by the NHheteroarene, (2) 1,2-disubstituted allyl acetates via hydroamination of the NH moiety with the alkyne, (3) 1,3disubstituted allenes via attack of the heteroaryls at the terminal position of the alkyne, and (4) allyl-gem-diheteroaryland 1,3-diheteroaryl-substituted propenes through attack of the NH heteroarene on the in situ generated allene. Thus, various functionalized heteroarenes can be practically realized via a single-step reaction between propargyl acetates and NHheteroarenes.² Recently, Shi's group demonstrated the synthesis of propargyl and allene triazoles by the iron-catalyzed regioselective attack of triazole on propargyl alcohols.^{2b,c} The Au-catalyzed synthesis of functionalized allenes from propargyl alcohols and arenes has also been reported.¹⁰ Interestingly, gemdipyrazolylalkanes were easily synthesized from the Agcatalyzed regioselective attack of two pyrazoles at an aliphatic terminal alkyne carbon center.^{2a} Our recent work in the development of novel reactions of propargyl alcohols inspired us to explore the Lewis acid catalyzed reaction between propargyl acetate and pyrazole.³ We anticipated the formation of the rarely observed hydroamination compound 1-aryl-2pyrazolyl allyl acetate (3, path I), 1-aryl-3-pyrazolyl allene (A, path II), and propargyl-N-pyrazole (6, path III) (Scheme 1). Furthermore, α -attack of pyrazole on the transiently formed allene pyrazole A could afford (E)-allyl-gem-dipyrazoles (4; ADPs), a new class of scorpionate-type ligands, whereas γ -attack

of pyrazole could afford (*E*)-1,1'-(3-arylprop-1-ene-1,3-diyl)-bis(1*H*-pyrazole) (**5**).

Interestingly, the *gem*-dipyrazolyl derivatives exhibited analgesic and anti-inflammatory activities.⁴ The two adjacent nitrogen atoms in 4 give strong chelation ability to the metal, and the complexes are useful in accomplishing various catalytic organic transformations.^{5,6} Importantly, some of the Ptcoordinated complexes show anticancer activity.⁷ We herein report the synthesis of novel ADPs (4), 1-aryl-2-*N*pyrazolylallyl acetate (3), and 1,3-dipyrazolyl-3-arylpropene (5) from propargyl acetates and pyrazoles in the presence of AgNO₃.

RESULTS AND DISCUSSION

To start with, 1-phenylprop-2-ynyl acetate (1a) and pyrazole (2) were independently reacted in the presence of various Lewis acids at 80 °C for 24 h. The details of the optimization studies are shown in Table 1. The reaction between 1a (1.0 equiv) and 2 (5.0 equiv) with 10 mol % AgOTf in chlorobenzene produced the (*E*)-allyl-gem-dipyrazole (ADP) 4a in 41% yield, 1-phenyl-2-N-pyrazolyl allyl acetate (3a; 18%), and 1,3-dipyrazolyl-3-phenylpropene (5a; 20%) with incomplete consumption of 1a (entry 1). Gratifyingly, 4a, 3a, 5a, and unreacted 1a were easily isolated through flash column chromatography in pure form. Incomplete conversion of 1a and poor overall yield of the products 3a-5a were noticed when Cu(OTf)₂, In(OTf)₃, and CuNO₃·H₂O were independently employed (entries 2-4). The use of Ph₃PAuCl or AuCl₃ catalyst was not satisfactory, giving a complex reaction profile with formation of a trace amount of 4a (entries 5 and 6).

ACS Publications © 2013 American Chemical Society

Received: August 22, 2013 Published: November 4, 2013

Scheme 1. Reaction between Propargyl Acetate and Pyrazole

Table 1. Optimization of Reaction Conditions^a

entry	amt of 2 (equiv)	catalyst	solvent	yield (%) ^b		
				3a	4a	5a
1	5.0	AgOTf	chlorobenzene	18	41	20
2	5.0	$Cu(OTf)_2$	chlorobenzene	<1	<5	<2
3	5.0	In(OTf) ₃	chlorobenzene	<1	<6	<3
4	5.0	CuNO ₃ ·H ₂ O	chlorobenzene	<2	<8	<7
5	5.0	Ph ₃ PAuCl	chlorobenzene	n.d.	10	n.d.
6	5.0	AuCl ₃	chlorobenzene	trace	<5	trace
7	5.0	AgNO ₃	chlorobenzene	21	58	11
8	5.0	AgCl	chlorobenzene	<2	<9	<6
9	5.0	Ag ₂ CO ₃	chlorobenzene	13	25	12
10	5.0	AgBF ₄	chlorobenzene	17	35	18
11	5.0	AgNO ₃	THF	18	36	16
12	5.0	AgNO ₃	CH ₃ CN	10	37	29
13	5.0	AgNO ₃	DMF	22	38	17
14	5.0	AgNO ₃	DCE	08	20	12
15	2.0	AgNO ₃	chlorobenzene	25	43	08
16	4.0	AgNO ₃	chlorobenzene	21	55	10
17	6.0	AgNO ₃	chlorobenzene	20	53	18
18	8.0	AgNO ₃	chlorobenzene	21	51	19
Postions word	carried out using 1a (0.5 m	mol) and catalyst (10 mc	1%) in solvent (0.5 mI) at	$80 \circ C$ for 24 h b	colated wields n	l - not detected

⁴Reactions were carried out using 1a (0.5 mmol) and catalyst (10 mol %) in solvent (0.5 mL) at 80 °C for 24 h. ⁶Isolated yields. n.d. = not detected.

To our delight, reaction with AgNO3 delivered an improved yield of 4a (58%), though 3a and 5a were also isolated in 21% and 11% yields, respectively (Table 1, entry 7). A trace amount of products 3a-5a were noted in GC-MS, when the reaction was conducted with AgCl (entry 8), whereas Ag_2CO_3 or $AgBF_4$ had only a moderate influence (entries 9 and 10). Of the various Ag salts examined, AgNO3 was found to be effective (entry 7). It is worth mentioning that we did not observe even a trace of propargyl-*N*-pyrazole **6**.^{2b} We next explored the effect of solvents. Incomplete conversion of 1a with the formation of a moderate amount of 4a was observed when polar aprotic solvents such as THF, CH₃CN, and DMF were used (entries 11–13). The reaction in DCE was poor (entry 14). The use of different amounts of pyrazole was further investigated. The loading of a lower amount of pyrazole, from 5.0 to 2.0 or 4.0 equiv, led to 4a with slightly decreased yield (entries 15 and 16). An enhanced yield of 5a was observed when 6.0/8.0 equiv of 2 was employed (entries 17 and 18). We therefore used 5.0 equiv of pyrazole in this transformation. However, the reaction

of O-pivaloyl- or O-Boc-protected propargyl alcohols with pyrazole produced poor amounts of the ADPs.⁸

Reaction Scope. The optimized catalytic condition shown in entry 7 of Table 1 (10 mol % of $AgNO_3$ in chlorobenzene at 80 °C) was finally selected in screening the reaction among a series of propargyl acetates and pyrazole (2). The results are summarized in Table 2. The electron-neutral 1-phenylprop-2ynyl acetate (1a) reacted with 2 to give 3a-5a in overall good yields, with the isolation of 54% of 4a. The F/Cl groups at the *para* position on the aryl moiety in 1b,c reacted effectively with 2, and the corresponding allyl acetates 3b,c and dipyrazolylbearing compounds 4b,c and 5b,c were obtained in good overall yields.

The reaction of propargyl acetates having electron-donating methyl, methoxy, or phenoxy groups at the 4- and/or 3-position on the aryl ring with 2 gave the corresponding ADPs 4d-f in 48%, 56%, and 63% yields, respectively. The free phenol –OH moiety did not affect the reaction outcome, and the corresponding phenol products 3g-5g were isolated in 83% overall yield. Although annulation between phenols and

Table 2. AgNO₃-Catalyzed Reaction between Propargyl Acetates and Pyrazole $(2)^{a,b}$

^{*a*}Reactions were carried out using 1 (1.0 mmol), 2 (5.0 mmol), and AgNO₃ (10 mol %) in chlorobenzene (1.0 mL) at 80 °C for 24 h. ^{*b*}Isolated yield. ^{*c*}Deprotection of the acetyl group was observed. ^{*d*}Reaction continued for 53 h.

propargyl alcohols in the presence of a Lewis acid is known to furnish benzofurans,⁹ not even a trace amount of benzofuran was observed by GC-MS analysis under the optimized reaction conditions. Gratifyingly, the hydroxyl protecting groups O-TBDMS and O-MOM survived during the reaction and the corresponding products **3h**–**5h** and **3i** and **4i** were obtained in good yields.

Since phenolic esters are more labile than esters obtained from alcohols,¹⁰ we expect cleavage of the phenol-O-acetate group in this Ag-catalyzed transformation. As anticipated, the acyl group was cleaved under the reaction conditions to afford 3g-5g. To investigate the effect of *ortho* substitution, *o*-methyl, *o*-bromo, and *o*,*p*-dichloro groups on the aryl moiety in the propargyl acetates were individually reacted with 2 and the corresponding products 3k-5k, 3l and 4l, and 3m and 4m

The Journal of Organic Chemistry

were isolated in 75%, 70% and 81% overall yields, respectively. Moreover, the reaction between the sterically demanding 1-(2,6-dichlorophenyl)-prop-2-ynyl acetate (1n) and 2 gave 3n (12%) and 4n (51%) in overall moderate amounts. X-ray crystallographic analysis unambiguously elucidated the structure of 4n.¹¹ The 1-naphthyl-substituted ADP 40 was obtained in 48% yield. The structures of 30 and 50 were confirmed on the basis of X-ray crystallographic analysis.¹¹ Generally, coordination of the S heteroatom to the Lewis acid has a negative impact on the reaction outcome.¹² However, the thienyl-2-substituted propargyl acetate 1p reacted with 2 under the optimized conditions to afford 3p-5p, albeit in relatively good isolated yields of 12%, 55%, and 7%, respectively. The formyl group did not affect the reaction, delivering 4q and 3q in 54% and 19% yields, respectively. The optimized conditions tolerate the labile 1,3-dioxolane protecting group, furnishing 3r-5r in 77% overall yield. The electron-rich methylenedioxysubstituted propargyl acetate 1s reacted sluggishly with 2, delivering 10%, 50%, and 17% of 3s-5s, respectively. However, the reaction of alkylpropargyl acetate with 2 gave the hydroamination products 3t and 3t' (Scheme 2).^{2a}

Scheme 2. Reaction with Alkylpropargyl Acetate

With the isolation of the products **3** and ADPs **4**, the hydrogenation of the double bond in **3** and **4** was next investigated. For example, hydrogenation of 1-(naphthalen-1-yl)-2-(1*H*-pyrazol-1-yl)allyl acetate (**30**) with Pd/C in the presence of an H₂ balloon in MeOH furnished a mixture of an equal amount of diastereomeric α -heteroarylated alcohol 7, a key skeleton found in various azole-bearing antifungal agents¹³ (Scheme 3, eq 1). Similarly, **4a** was hydrogenated under

Scheme 3. Hydrogenation Reactions

identical conditions, producing the *gem*-dipyrazolyl alkane 8 in 98% yield (Scheme 3, eq 2). The *gem*-dipyrazolyl alkanes exhibit anti-inflammatory actions.⁴

A wide array of the stereoselective scorpionate ligands (*E*)allyl-*gem*-dipyrazoles (ADPs) have been prepared from propargyl acetates and pyrazole (Table 2). The presence of two adjacent N atoms in the ADPs provides strong chelation ability to the metal, allowing the formation of newly synthesized scorpionate ligands. We therefore envisioned examining the chelation ability of ADPs to the transition metal. Gratifyingly, the reaction of 40/8 with PdCl₂ in CH₃CN at room temperature readily delivered the palladium complexes **9** and **10** as pale yellow solids in 89% and 88% yields, respectively (Scheme 4). The structure of **9** was confirmed on the basis of an X-ray crystallographic analysis.¹¹

Scheme 4. Complexation with PdCl₂

To demonstrate the utility of the newly synthesized complex, we explored examining this scorpionate-ligand-bearing Pd complex 9/10 in the well-known Suzuki–Miyaura biaryl cross coupling (Table 3).¹⁴ Gratifyingly, the electron-rich, electron-

Table 3. Suzuki Coupling between Various Aryl Halides and Arylboronic Acids^a

Arl	+ Ar ¹ B(OF	H) ₂ 9 / 10 (0.1 mol%	⁶⁾ → ArAr ¹
11	12	K ₂ CO ₃ H ₂ O, 80 °C	13
entry	Ar-X (11)	$Ar^{1}-B(OH)_{2}$ (12)	$\begin{array}{c} \operatorname{Ar-Ar^{1}}\left(13\right)\\ \text{yield }\left(\%\right)^{b} \end{array}$
1	4-MeOC ₆ H ₄ I (11a)	$PhB(OH)_2$ (12a)	97 ^c
2	4-F ₃ CC ₆ H ₄ I (11b)	12a	72^c
3	2-MeC ₆ H ₄ I (11c)	12a	94 ^c
4	2-thienyl-I (11d)	12a	80 ^c
5	11a	$4-FC_{6}H_{4}B(OH)_{2}$ (12b)	95 ^c
6	11a	$3-\mathrm{MeC}_{6}\mathrm{H}_{4}\mathrm{B(OH)}_{2}$ (12c)	86 ^c
7	11a	$\begin{array}{c} 1\text{-naphthyl-B(OH)}_2\\ (\mathbf{12d}) \end{array}$	96 ^c
8	$\begin{array}{c} \text{4-MeOC}_6\text{H}_4\text{Br}\\ (\textbf{11e}) \end{array}$	12a	83 ^c
9	4-MeOC ₆ H ₄ Cl (11f)	12a	08 ^c
10	11a	12a	96 ^d
11	11e	12a	81 ^d
12	11f	12a	trace ^d

^{*a*}Reactions were carried out using **11** (3.0 mmol), **12** (6.0 mmol), catalyst **9/10** (0.1 mol %), and K₂CO₃ (6.0 mmol) in H₂O (10.0 mL) at 80 °C for 24 h. ^{*b*}Isolated yield. ^{*c*}Catalyst **9** was employed. ^{*d*}Catalyst **10** was used.

poor, sterically hindered, and heteroaryl iodides 11 were effectively coupled with PhB(OH)₂ (12a) under the influence of 0.1 mol % of catalyst 9 in aqueous K_2CO_3 at 80 °C (entries 1–4). Similarly, the reaction of substituted boronic acids 12b–d with 4-methoxyiodobenzene (11a) afforded the desired biaryls in excellent yields (entries 5–7). Furthermore, 4-methoxybromobenzene (11e) successufully coupled with 12a under the influence of catalyst 9 (entry 8), while the coupling of 4-methoxychlorobenzene (11f) with 12a gave 8% of the desired biaryl (entry 9).

We next explored the catalytic activity of a scorpionate ligand having a reduced double bond and tethered phenyl group, Pd Scheme 5

complex 10, in the Suzuki–Miyaura couplings (entries 10-12, Table 3). Gratifyingly, coupling of 4-methoxyiodo- and 4-methoxybromobenzene (11a,e) with 12a successfully proceeded under the influence of catalyst 10, delivering 96% and 81% of the biaryl, respectively (entries 10 and 11). A trace amount of the desired biaryl was detected in GC-MS when 4-methoxychlorobenzene (11f) reacted with 12a in the presence of catalyst 10 (entry 12).

On the basis of precedence and our observations, a plausible reaction pathway is shown in Scheme 1.10,2,15 Markovnikov hydroamination of pyrazole to the Lewis acid activated triple bond of propargyl acetate provides the 1-aryl-2-pyrazolyl allyl acetate (path I).^{15b} The attack of pyrazole at the terminal side of the alkyne in the propargyl acetate possibly generates the allene intermediate A with cleavage of the acetate moiety (path II).²¹ Subsequently, addition of pyrazole at the α or γ position of the transiently formed allene delivers ADPs 4 (major) and 1,3-dipyrazolyl-3-aryl propenes 5 (minor). The coordination of pyrazole N and the β carbon of allene to the Ag(I) salt allows the formation of the intermediate C.^{1j,22} The preferential attack of pyrazole at the intermediate C generates 4 as the major product. The lack of coordination of the aryl moiety to the Agactivated allene is presumably responsible for the formation of the minor amount of 5. Alternatively, hydroamination of pyrazole with 6 would lead to 5. Unfortunately, we did not even observe a trace amount of 6 in this study, as the identical compounds of 6 are found to be unstable in the Lewis acid catalysts.2b

CONCLUSION

In conclusion, we have demonstrated an Ag-catalyzed reaction between propargyl acetate and pyrazole for the synthesis of novel ADPs. The reaction also affords 1,2-disubstituted allyl acetates 3 (10–25% yield) and 1,3-dipyrazolyl-3-aryl propenes 5 (6–17% yield), shows a broad substrate scope, and tolerates various O-bearing labile protecting groups. The PdCl₂-chelated complex of ADPs was successfully employed in Suzuki reactions for biaryl synthesis. Further investigation of the synthetic applications of ADP–metal complexes is currently underway.

EXPERIMENTAL SECTION

General Information. Unless otherwise noted, all of the reagents and intermediates were obtained commercially and used without purification. Dichloromethane (DCM) and chlorobenzene were distilled over $CaCl_2$. THF was freshly distilled over sodium/ benzophenone ketyl under dry nitrogen. Methanol was dried over magnesium cake. Analytical and spectral data of all those known compounds exactly match the reported values.

Proton and carbon nuclear magnetic resonance spectra (¹H NMR, ¹³C NMR, and ¹⁹F NMR) were recorded on 400 MHz (¹H NMR, 400 MHz; ¹³C NMR, 101 MHz; ¹⁹F NMR, 376 MHz) and 500 MHz spectrometers (¹H NMR, 500 MHz; ¹³C NMR, 126 MHz; ¹⁹F NMR, 470 MHz) with the solvent resonance as internal standard (¹H NMR, CHCl₃ at 7.26 ppm; ¹³C NMR, CDCl₃ at 77.0 ppm). In a few cases tetramethylsilane (TMS) at 0.00 ppm was used as the reference standard. IR spectra were recorded and reported in cm⁻¹. LC-MS spectra were obtained (EI positive/negative mode) with an ionization

voltage of 70 eV; data are reported in the form of m/z (intensity relative to base peak 100). Elemental (C, H, N) analysis was carried out using an EA 1112 analyzer. Melting points were determined on an electro-thermal melting point apparatus and are uncorrected. X-ray data were collected at 298 K using graphite-monochromated Mo K α radiation (0.71073 Å).

Preparation of 1" from 1': **General Procedure GP-1 (Scheme 5).** A solution of (trimethylsilyl)acetylene (1.2 equiv) in THF (50 mL) was stirred in a 100 mL oven-dried two-necked round-bottom flask under an argon atmosphere at -70 °C. *n*-Butyllithium (1.2 equiv, 1.60 M in THF) was introduced over 30 min at -70 °C. After an additional 1 h of stirring, a solution of the aldehyde (1'; 1.0 g, 1.0 equiv) in THF (5 mL) was added at -70 °C. The resulting mixture was stirred for 1 h and warmed to room temperature slowly, and the stirring was continued for 30 min. The reaction mixture was quenched with saturated NH₄Cl aqueous solution (20 mL) at 0 °C. The organic layer was separated; the aqueous layer was extracted with Et₂O (2 × 20 mL). The combined extracts were washed with water (2 × 20 mL) and brine (25 mL) and dried over Na₂SO₄. The solvent was filtered and evaporated under the reduced pressure. The crude residue was subsequently used for the desilylation reaction.

Methanol (15 mL) and K_2CO_3 (2.5 equiv) were introduced to the crude residue obtained in the above reaction, and the heterogeneous mixture was stirred under an argon atmosphere at ambient temperature overnight. The reaction mixture was diluted with ethyl acetate (50 mL) and washed with water (2 × 20 mL) and brine (10 mL). The organic layer was separated, dried over Na_2SO_4 , filtered, and concentrated under vacuum. In most cases the crude residue was used for the acetylation reaction without purification, following the general procedure GP 2.

Synthesis of 1 from 1" through Acylation of the –OH Moiety: General Procedure GP-2. To a solution of 1" (1.0 equiv) and DMAP (0.1 equiv) in dichloromethane (15 mL) were added Et₃N (3 equiv) and acetic anhydride (1.3 equiv) under an argon atmosphere at an ambient temperature. The resulting reaction mixture was stirred for 1 h at an ambient temperature. Water (20 mL) was added to the reaction mixture. The organic layer was separated; the aqueous layer was extracted with CH_2Cl_2 (2 × 20 mL). The combined extracts were washed with water (2 × 20 mL) and brine (25 mL) and dried over Na_2SO_4 . The solvent was filtered and evaporated under reduced pressure. The crude residue was purified using column chromatography on silica gel with hexane and ethyl acetate solvents as eluents.

Physical characterization data exactly match the reported values for the respective compounds 1a-h,k-q,s^{3a} whereas data for 1i,j,r are new.

1-(3-(Methoxymethoxy)phenyl)prop-2-ynyl Acetate (1i). Following the general procedures GP-1 and GP-2, the reaction of 3-(methoxymethoxy)benzaldehyde (1'i; 1.0 g, 6.02 mmol), (trimethylsilyl)acetylene (0.71 g, 7.22 mmol), and n-BuLi (4.6 mL, 1.6 M in THF, 7.22 mmol) followed by desilylation gave the crude product 1"i. Acetylation of the -OH moiety of the crude 1"i afforded 1-(3-(methoxymethoxy)phenyl)prop-2-ynyl acetate (1i; 775 mg) in overall 55% yield as a pale yellow liquid: $R_f = 0.71$ (4/1 hexane/ EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, J = 8.0 Hz, 1H), 7.21 (bt, J = 2.0 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.06 (ddd, J = 8.4, 2.4, 0.8 Hz, 1H), 6.42 (bd, J = 2.0 Hz, 1H), 5.20 (bs, 2H), 3.49 (s, 3H), 2.66 (bd, J = 2.0 Hz, 1H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 157.3, 137.8, 129.7, 121.0, 116.6, 115.6, 94.3, 80.0, 75.4, 64.9, 55.9, 20.9; IR (neat) $\nu_{\rm max}$ 3287, 2957, 2125, 1743, 1601, 1226, 696 cm⁻¹; MS (EI) m/z (%) 235 (M⁺ + 1, 100), 220 (3). Anal. Calcd for C13H14O4: C, 66.66; H, 6.02. Found: C, 66.72; H, 6.15.

The Journal of Organic Chemistry

1-(3-Acetoxyphenyl)prop-2-ynyl Acetate (1j). Following the general procedure GP-1 and GP-2, reaction of 3-((*tert*-butyldimethylsilyl)oxy)benzaldehyde (1'j; 1.0 g, 4.24 mmol), (trimethylsilyl)acetylene (498 mg, 5.07 mmol), and *n*-BuLi (3.2 mL, 1.6 M in THF, 5.08 mmol) gave the crude propargylic alcohol. Desilylation and acetylation of both –OH moieties afforded 1-(3-acetoxyphenyl)prop-2-ynyl acetate (1j; 462 mg) in 47% overall yield as a pale yellow oil: $R_f = 0.11$ (9/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.36 (m, 2H), 7.27 (s, 1H), 7.10 (bd, J = 2.8 Hz, 1H), 6.44 (s, 1H), 2.67 (bs, 1H), 2.28 (s, 3H), 2.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 169.1, 150.6, 137.8, 129.5, 124.9, 122.2, 120.8, 79.6, 75.6, 64.4, 20.9, 20.8; IR (neat) ν_{max} 3288, 2935, 1739, 1201, 1016, 800 cm⁻¹; MS (EI) m/z (%) 255 (M⁺ + Na, 100), 232 (M⁺, 4), 173 (8). Anal. Calcd for C₁₃H₁₂O₄: C, 67.23; H, 5.21. Found: C, 67.35; H, 5.18.

1-(4-(1,3-Dioxan-2-yl)phenyl)prop-2-ynyl Acetate (1r). Following the general procedure GP-1 and GP-2, reaction of 4-(1,3-dioxan-2yl)benzaldehyde (1'r; 1.0 g, 5.21 mmol), (trimethylsilyl)acetylene (0.61 g, 6.25 mmol), and *n*-BuLi (4.0 mL, 1.6 M in THF, 6.25 mmol) followed by desilvlation gave the crude product 1"r. Acetylation of the -OH moiety of the crude 1"r afforded 1-(4-(1,3-dioxan-2-yl)phenyl)prop-2-ynyl acetate (1r; 840 mg) in 62% overall yield as a colorless liquid: $R_f = 0.69 (3/1 \text{ hexane/EtOAc}) [silica, UV and I_2]; {}^{1}H NMR$ (400 MHz, CDCl₃) δ 7.59–7.49 (m, 4H), 6.45 (bd, J = 2.4 Hz, 1H), 5.51 (s, 1H), 4.27 (dd, J = 11.2, 5.2 Hz, 2H), 3.99 (td, J = 12.0, 2.4 Hz, 2H), 2.64 (bd, J = 2.0 Hz, 1H), 2.30–2.15 (m, 1H), 2.09 (s, 3H), 1.46 (dd, J = 13.6, 1.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 139.5, 136.8, 127.5, 126.3, 100.9, 80.0, 75.4, 67.2, 64.9, 25.6, 20.9; IR (neat) $\nu_{\rm max}$ 3287, 2966, 1741, 1377, 1016, 642 cm⁻¹; MS (EI) m/z(%) 261 (M⁺ + 1, 100), 247 (5), 245 (5). Anal. Calcd for C₁₅H₁₆O₄: C, 69.22; H, 6.20. Found: C, 69.06; H, 6.27.

Silver(I)-Catalyzed Reaction between Pyrazole (2) and Propargyl Acetates 1: General Procedure GP-3. Propargyl acetate 1 (1.0 mmol), pyrazole (5.0 mmol), and AgNO₃ (16.9 mg, 0.1 mmol) were placed in an oven-dried Schlenk flask under an argon atmosphere. Chlorobenzene (1.0 mL) was added to this mixture. The resulting solution was stirred at 80 °C for 24 h. Upon complete consumption of 1, the crude reaction mixture was purified using column chromatography on silica gel with hexane and ethyl acetate solvents as eluents.

(*E*)-1,1'-(3-Phenylprop-2-ene-1,1-diyl)bis(1H-pyrazole) (**4**a): color-less solid (135 mg, 54% yield); mp 94–95 °C; $R_f = 0.30$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (bd, J = 2.4 Hz, 2H), 7.63 (bd, J = 1.6 Hz, 2H), 7.43 (d, J = 7.6 Hz, 2H), 7.36–7.27 (m, 3H), 7.23 (d, J = 6.4 Hz, 1H), 6.95 (dd, J = 15.6, 6.0 Hz, 1H), 6.60 (d, J = 16.0 Hz, 1H), 6.33 (bt, J = 1.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.3, 135.5, 134.9, 128.6, 128.5, 128.4, 126.9, 122.4, 106.5, 76.0; IR (KBr) ν_{max} 3109, 1392, 1296, 970, 754, 628 cm⁻¹; MS (EI) m/z (%) 249 (M⁺–1, 100), 229 (54), 211 (35), 171 (35), 134 (19), 113 (27). Anal. Calcd for C₁₅H₁₄N₄: C, 71.98; H, 5.64; N, 22.38. Found: C, 72.05; H, 5.71; N, 22.31.

1-Phenyl-2-(1H-pyrazol-1-yl)allyl acetate (**3a**): pale yellow oil (61 mg, 25% yield); $R_{\rm f}$ = 0.53 (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, *J* = 5.6, 2.4 Hz, 2H), 7.44 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.37–7.29 (m, 3H), 7.12 (s, 1H), 6.27 (t, *J* = 2.0 Hz, 1H), 5.58 (bd, *J* = 0.8 Hz, 1H), 5.11 (s, 1H), 2.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 144.0, 140.5, 136.8, 128.5, 127.8, 127.2, 106.8, 103.3, 73.1, 21.0; IR (neat) $\nu_{\rm max}$ 3474, 2932, 1745, 1226, 949, 752 cm⁻¹; MS (EI) m/z (%) 243 (M⁺ + 1, 100), 159 (3), 137 (3), 81 (3). Anal. Calcd for C₁₄H₁₄N₂O₂: C, 69.41; H, 5.82; N, 11.56. Found: C, 69.75; H, 6.12; N, 11.15.

(*E*)-1,1'-(3-Phenylprop-1-ene-1,3-diyl)bis(1H-pyrazole) (**5***a*): yellow oil (23 mg, 9% yield); $R_f = 0.23$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, J = 4.8, 1.6 Hz, 2H), 7.56 (d, J = 2.4 Hz, 1H), 7.50 (d, J = 2.4 Hz, 1H), 7.41–7.27 (m, SH), 6.85 (dd, J = 14.0, 0.8 Hz, 1H), 6.69 (dd, J = 14.0, 7.2 Hz, 1H), 6.36 (t, J = 2.0 Hz, 1H), 6.33 (t, J = 2.0 Hz, 1H), 6.22 (d, J = 7.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 139.7, 138.8, 130.5, 128.9, 128.5, 128.34, 128.31, 127.3, 114.9, 107.4, 105.8, 65.1; IR (neat) ν_{max} 3433, 3113, 2924, 1680, 1394, 1091, 750 cm⁻¹; MS (EI) m/z (%) 249 (M⁺

- 1, 100), 237 (14), 209 (4). Anal. Calcd for $\rm C_{15}H_{14}N_4:$ C, 71.98; H, 5.64; N, 22.38. Found: C, 71.86; H, 5.61; N, 22.45.

(E)-1,1'-(3-(4-Fluorophenyl)prop-2-ene-1,1-diyl)bis(1H-pyrazole) (**4b**): pale yellow solid (145 mg, 54% yield); mp 60–61 °C; $R_f = 0.44$ (3/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (bd, J = 2.0 Hz, 2H), 7.59 (bd, J = 1.6 Hz, 2H), 7.34 (dd, J = 8.8, 5.6 Hz, 2H), 7.18 (d, J = 6.0, 1H), 6.97 (t, J = 8.8 Hz, 2H), 6.84 (dd, J = 16.0, 6.4 Hz, 1H), 6.51 (d, J = 16.0 Hz, 1H), 6.29 (t, J = 2.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.7 (d, J = 250Hz), 140.3, 134.2, 131.0, 128.6, 128.5, 122.2, 115.4 (d, J = 21.7 Hz), 106.5, 75.9; ¹⁹F NMR (376 MHz, CDCl₃) δ –112.26 to –112.34 (m); IR (KBr) ν_{max} 3115, 2924, 1678, 1510, 1394, 1226, 752 cm⁻¹; MS (EI) m/z (%) 269 (M⁺ + 1, 100), 186 (11), 137 (19), 91 (4). Anal. Calcd for C₁₅H₁₃FN₄: C, 67.15; H, 4.88; N, 20.88. Found: C, 67.22; H, 4.81; N. 20.75.

1-(4-Fluorophenyl)-2-(1H-pyrazol-1-yl)allyl acetate (**3b**): pale yellow semisolid (52 mg, 20% yield); $R_f = 0.66$ (3/1 hexane/ EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCI₃) δ 7.58 (d, J = 2.4 Hz, 1H), 7.56 (bd, J = 1.2 Hz, 1H), 7.46–7.37 (m, 2H), 7.09 (s, 1H), 7.00 (t, J = 8.8 Hz, 2H), 6.26 (bt, J = 2.0 Hz, 1H), 5.52 (s, 1H), 5.11 (s, 1H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCI₃) δ 169.3, 162.7 (d, J = 248 Hz), 144.2, 140.7, 132.9, 129.3 (d, J = 8.4 Hz), 127.8, 115.5 (d, J = 21.6 Hz) 107.0, 102.9, 72.4, 21.0; ¹⁹F NMR (376 MHz, CDCI₃) δ –113.07 to –113.14 (m); IR (neat) ν_{max} 3128, 1747, 1510, 1224, 752 cm⁻¹; MS (EI) m/z (%) 261 (M⁺ + 1, 100), 233 (54), 219 (14), 201 (16), 113 (9). Anal. Calcd for C₁₄H₁₃FN₂O₂: C, 64.61; H, 5.03; N, 10.76. Found: C, 64.48; H, 5.10; N, 10.85.

(E)-1,1'-(3-(4-Fluorophenyl)prop-1-ene-1,3-diyl)bis(1H-pyrazole) (**5b**): yellow oil (21 mg, 8% yield); $R_f = 0.31$ (3/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (bd, J = 2.0 Hz, 1H), 7.61 (bd, J = 2.0 Hz, 1H), 7.56 (d, J = 2.4 Hz, 1H), 7.49 (d, J = 2.4 Hz, 1H), 7.26–7.17 (m, 2H), 7.10–7.03 (m, 2H), 6.82 (dd, J = 14.0, 0.8 Hz, 1H), 6.66 (dd, J = 14.0, 6.8 Hz, 1H), 6.37 (t, J = 2.0 Hz, 1H), 6.33 (t, J = 2.4 Hz, 1H), 6.19 (d, J = 6.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (d, J = 248 Hz), 141.5, 139.9, 134.7 (d, J = 3.2 Hz), 130.6, 129.1 (d, J = 8.5 Hz), 128.4 (2c), 115.8 (d, J = 21.9 Hz), 114.7, 107.5, 106.0, 64.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –113.53 to –113.60 (m); IR (neat) ν_{max} 2924, 1678, 1510, 1394, 1226, 752 cm⁻¹; MS (EI) *m*/*z* (%) 269 (M⁺ + 1, 19), 201 (100), 113 (14). Anal. Calcd for C₁₅H₁₃FN₄: C, 67.15; H, 4.88; N, 20.88. Found: C, 67.06; H, 4.91; N, 20.95.

(E)-1,1'-(3-(4-Chlorophenyl)prop-2-ene-1,1-diyl)bis(1H-pyrazole) (4c): pale yellow solid (153 mg, 54% yield); mp 111–112 °C; $R_f = 0.44$ (3/1 hexane/EtOAc) [silica, UV and I_2]; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (bd, J = 2.4 Hz, 2H), 7.59 (bd, J = 2.0 Hz, 2H), 7.28 (q, J = 8.4 Hz, 4H), 7.18 (dd, J = 6.0, 0.8 Hz, 1H), 6.89 (dd, J = 16.0, 6.0 Hz, 1H), 6.49 (d, J = 16.0 Hz, 1H), 6.30 (bt, J = 2.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 134.3, 134.1, 133.4, 128.7, 128.5, 128.1, 123.2, 106.6, 75.9; IR (KBr) ν_{max} 3099, 1390, 1089, 750 cm⁻¹; MS (EI) m/z (%) 286 (M⁺ + 1, 100), 230 (21), 208 (4), 190 (6). Anal. Calcd for C₁₅H₁₃ClN₄: C, 63.27; H, 4.60; N, 19.68. Found: C, 63.41; H, 4.53; N, 19.58.

1-(4-Chlorophenyl)-2-(1H-pyrazol-1-yl)allyl acetate (**3c**): yellow oil (52 mg, 19% yield); $R_{\rm f} = 0.66$ (3/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 2.4 Hz, 1H), 7.57 (d, J = 1.6 Hz, 1H), 7.37 (dt, J = 8.8, 2.0 Hz, 2H), 7.29 (dt, J = 8.4, 2.0 Hz, 2H), 7.08 (s, 1H), 6.27 (bt, J = 2.4 Hz, 1H), 5.51 (bd, J = 1.2 Hz, 1H), 5.11 (s, 1H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 143.9, 140.6, 135.5, 134.4, 128.8, 128.7, 127.7, 107.0, 102.9, 72.4, 20.9; IR (neat) $\nu_{\rm max}$ 3128, 2928, 1745, 1651, 1228, 752 cm⁻¹; MS (EI) m/z (%) 277 (M⁺, 94), 249 (49), 217 (100), 183 (29), 149 (6). Anal. Calcd for C₁₄H₁₃ClN₂O₂: C, 60.77; H, 4.74; N, 10.12. Found: C, 60.61; H, 4.71; N, 10.18.

(E)-1,1'-(3-(4-Chlorophenyl)prop-1-ene-1,3-diyl)bis(1H-pyrazole) (5c): yellow oil (17 mg, 6% yield); $R_f = 0.31$ (3/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 1.6 Hz, 1H), 7.60 (d, J = 1.6 Hz, 1H), 7.55 (d, J = 2.4 Hz, 1H), 7.49 (d, J = 2.4Hz, 1H), 7.34 (dt, J = 8.4, 2.0 Hz, 2H), 7.17 (dt, J = 8.4, 1.6 Hz, 2H), 6.83 (d, J = 14.4 Hz, 1H), 6.64 (dd, J = 14.0, 7.2 Hz, 1H), 6.36 (t, J = 2.0 Hz, 1H), 6.32 (t, J = 2.4 Hz, 1H), 6.17 (d, J = 6.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 140.6, 140.0, 137.4, 134.3, 130.8, 129.1, 128.6, 128.5, 114.4, 107.5, 106.0, 64.5; IR (neat) $\nu_{\rm max}$ 3113, 2924, 1678, 1394, 1091, 752 cm⁻¹; MS (EI) m/z (%) 286 (M⁺ + 1, 20), 285 (M⁺, 40), 233 (40), 217 (100), 181 (40), 149 (35). Anal. Calcd for C₁₅H₁₃ClN₄: C, 63.27; H, 4.60; N, 19.68. Found: C, 63.35; H, 4.65; N, 19.55.

(E)-1,1'-(3-p-Tolylprop-2-ene-1,1-diyl)bis(1H-pyrazole) (4d): pale yellow solid (127 mg, 48% yield); mp 79–80 °C; $R_f = 0.44$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (bd, J = 2.4 Hz, 2H), 7.61 (bd, J = 2.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.19 (dd, J = 6.0, 1.2 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 6.88 (dd, J = 16.0, 6.4 Hz, 1H), 6.58 (d, J = 16.4 Hz, 1H), 6.31 (bt, J = 2.4 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 138.7, 135.6, 132.2, 129.3, 128.5, 126.9, 121.4, 106.5, 76.2, 21.1; IR (KBr) ν_{max} 2916, 1512, 1388, 972, 758 cm⁻¹; MS (EI) m/z (%) 265 (M⁺ + 1, 100), 251 (11). Anal. Calcd for C₁₆H₁₆N₄: C, 72.70; H, 6.10; N, 21.20. Found: C, 72.58; H, 6.15; N, 21.07.

2-(1H-Pyrazol-1-yl)-1-p-tolylallyl acetate (3d): pale yellow solid (56 mg, 22% yield); mp 60–61 °C; $R_f = 0.62$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.56 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.04 (s, 1H), 6.26 (bt, J = 2.4 Hz, 1H), 5.58 (s, 1H), 5.10 (s, 1H), 2.32 (s, 3H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 144.1, 140.5, 138.4, 133.8, 129.2, 127.8, 127.3, 106.8, 103.1, 73.0, 21.1, 21.0; IR (KBr) ν_{max} 3026, 2924, 1745, 1228, 1028, 752 cm⁻¹; MS (EI) m/z (%) 257 (M⁺ + 1, 100), 239 (8), 157 (16), 133 (16), 85 (8). Anal. Calcd for C₁₅H₁₆N₂O₂: C, 70.29; H, 6.29; N, 10.93. Found: C, 70.38; H, 6.21; N, 10.85.

(E)-1,1'-(3-p-Tolylprop-1-ene-1,3-diyl)bis(1H-pyrazole) (5d): yellow oil (37 mg, 14% yield); $R_f = 0.29$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (bd, J = 6.4 Hz, 2H), 7.53 (bd, J = 2.0 Hz, 1H), 7.45 (bd, J = 2.0 Hz, 1H), 7.16 (bd, J = 2.0 Hz, 4H), 6.82 (d, J = 14.0 Hz, 1H), 6.66 (dd, J = 14.0, 6.8 Hz, 1H), 6.32 (d, J = 17.2 Hz, 2H), 6.16 (d, J = 6.8 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 139.6, 138.1, 135.7, 130.3, 129.5, 128.4, 128.2, 127.2, 115.1, 107.3, 105.7, 64.8, 21.0; IR (neat) ν_{max} 3111, 2922, 1678, 1514, 1089, 754 cm⁻¹; MS (EI) m/z (%) 265 (M⁺ + 1, 100), 197 (3), 147 (3). Anal. Calcd for C₁₆H₁₆N₄: C, 72.70; H, 6.10; N, 21.20. Found: C, 72.85; H, 6.03; N, 21.28.

(E)-1,1'-(3-(3-Methoxyphenyl)prop-2-ene-1,1-diyl)bis(1H-pyrazole) (**4e**): pale yellow solid (157 mg, 56% yield); mp 97–98 °C; $R_f = 0.24$ (4/1 hexane/EtOAc) [silica, UV and I_2]; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (bd, J = 2.4 Hz, 2H), 7.61 (bd, J = 1.6 Hz, 2H), 7.29 –7.19 (m, 2H), 7.02 (d, J = 7.6 Hz, 1H), 6.99–6.90 (m, 2H), 6.85 (dd, J = 8.4, 2.0 Hz, 1H), 6.58 (d, J = 16.0 Hz, 1H), 6.32 (bt, J = 2.4 Hz, 2H), 3.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 140.4, 136.3, 135.5, 129.5, 128.6, 122.7, 119.6, 114.5, 112.0, 106.5, 76.0, 55.1; IR (KBr) ν_{max} 3111, 2957, 1599, 1390, 1043, 754 cm⁻¹; MS (EI) m/z (%) 281 (M⁺ + 1, 100), 265 (14), 163 (4), 137 (14). Anal. Calcd for C₁₆H₁₆N₄O: C, 68.55; H, 5.75; N, 19.99. Found: C, 68.47; H, 5.82; N, 19.85.

1-(3-Methoxyphenyl)-2-(1H-pyrazol-1-yl)allyl acetate (**3e**): colorless oil (65 mg, 24% yield); $R_f = 0.43$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.58 (m, 2H), 7.25 (t, *J* = 8.0 Hz, 1H), 7.08 (s, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.97 (bt, *J* = 2.0 Hz, 1H), 6.84 (ddd, *J* = 8.0, 2.4, 0.8 Hz, 1H), 6.27 (t, *J* = 2.0 Hz, 1H), 5.57 (d, *J* = 0.8 Hz, 1H), 5.11 (s, 1H), 3.78 (s, 3H), 2.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 159.6, 144.0, 140.5, 138.4, 129.5, 127.8, 119.4, 113.8, 112.9, 106.8, 103.4, 72.9, 55.1, 21.0; IR (neat) ν_{max} 3130, 2939, 1747, 1602, 1228, 1030, 754 cm⁻¹; MS (EI) *m*/*z* (%) 273 (M⁺ + 1, 82), 245 (36), 229 (54), 213 (100), 145 (7), 102 (5). Anal. Calcd for C₁₅H₁₆N₂O₃: C, 66.16; H, 5.92; N, 10.29. Found: C, 66.32; H, 5.86; N, 10.15.

(E)-1,1'-(3-(3-Methoxyphenyl)prop-1-ene-1,3-diyl)bis(1H-pyrazole) (5e): yellow oil (17 mg, 6% yield); $R_f = 0.14$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (bd, J = 1.2 Hz, 1H), 7.62 (bd, J = 1.6 Hz, 1H), 7.57 (d, J = 2.0 Hz, 1H), 7.51 (d, J = 2.0 Hz, 1H), 7.32–7.27 (m, 1H), 6.89–6.84 (m, 3H), 6.78 (bt, J = 1.6 Hz, 1H), 6.67 (dd, J = 11.2, 5.6 Hz, 1H), 6.37 (t, J = 1.6 Hz, 1H), 6.18 (d, J = 5.6 Hz, 1H), 3.79 (s,

3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 141.3, 140.4, 139.7, 130.7, 129.9, 128.5, 128.3, 119.6, 114.8, 113.7, 113.2, 107.4, 105.9, 65.1, 55.3; IR (neat) ν_{max} 3117, 2932, 1678, 1601, 1261, 1043, 754 cm⁻¹; MS (EI) m/z (%) 281 (M⁺ + 1, 100), 249 (8), 171 (4). Anal. Calcd for C₁₆H₁₆N₄O: C, 68.55; H, 5.75; N, 19.99. Found: C, 68.41; H, 5.71; N, 19.85.

(E)-1,1'-(3-(3-Phenoxyphenyl)prop-2-ene-1,1-diyl)bis(1H-pyrazole) (4f): pale yellow solid (215 mg, 63% yield); mp 75–76 °C; $R_f = 0.35$ (6/1 hexane/EtOAc) [silica, UV and I_2]; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (bd, J = 2.8 Hz, 2H), 7.61 (bd, J = 1.2 Hz, 2H), 7.38–7.25 (m, 3H), 7.19 (dd, J = 12.8, 6.0 Hz, 2H), 7.14–7.08 (m, 2H), 7.02 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 7.2 Hz, 1H), 6.91 (dd, J = 16.0, 6.0 Hz, 1H), 6.54 (d, J = 16.0 Hz, 1H), 6.31 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.3, 156.8, 140.4, 136.8, 134.8, 129.8, 129.6, 128.5, 123.3, 123.2, 121.9, 119.1, 118.6, 117.2, 106.6, 75.9; IR (KBr) ν_{max} 3109, 1577, 1388, 1271, 750 cm⁻¹; MS (EI) m/z (%) 343 (M⁺ + 1, 3), 275 (38), 243 (100), 242 (27), 207 (14), 130 (8). Anal. Calcd for C₂₁H₁₈N₄O: C, 73.67; H, 5.30; N, 16.36. Found: C, 73.57; H, 5.36; N, 16.25.

1-(3-Phenoxyphenyl)-2-(1H-pyrazol-1-yl)allyl acetate (**3f**): pale yellow oil (63 mg, 19% yield); $R_f = 0.56$ (6/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 2.0 Hz, 1H), 7.60 (bd, J = 0.8 Hz, 1H), 7.38–7.33 (m, 2H), 7.30 (t, J = 6.4 Hz, 1H), 7.18–7.09 (m, 3H), 6.98 (bt, J = 0.8 Hz, 1H), 6.96–6.92 (m, 1H), 6.30 (t, J = 1.6 Hz, 1H), 5.55 (bd, J = 0.8 Hz, 1H), 5.11 (s, 1H), 2.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 157.4, 156.9, 144.1, 140.6, 139.0, 129.9, 129.8, 127.9, 123.4, 122.1, 118.9, 118.7, 117.7, 106.9, 103.5, 72.8, 21.0; IR (neat) ν_{max} 3065, 2930, 1747, 1585, 1234, 1024, 754 cm⁻¹; MS (EI) m/z (%) 336 (M⁺ + 2, 51), 335 (M⁺ + 1, 100), 263 (11). Anal. Calcd for C₂₀H₁₈N₂O₃: C, 71.84; H, 5.43; N, 8.38. Found: C, 71.68; H, 5.52; N, 8.31.

(E)-1,1'-(3-(3-Phenoxyphenyl)prop-1-ene-1,3-diyl)bis(1H-pyrazole) (5f): yellow oil (21 mg, 6% yield); $R_f = 0.20$ (6/1 hexane/ EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (bs, 1H), 7.60 (bd, J = 1.6 Hz, 1H), 7.56 (bd, J = 2.4 Hz, 1H), 7.51 (bd, J = 2.4 Hz, 1H), 7.37–7.28 (m, 3H), 7.11 (td, J = 7.6, 1.6 Hz, 1H), 7.01– 6.86 (m, 6H), 6.64 (dd, J = 14.0, 7.2 Hz, 1H), 6.36 (bt, J = 2.4 Hz, 1H), 6.32 (bt, J = 2.4 Hz, 1H), 6.17 (d, J = 7.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 156.7, 141.4, 141.0, 139.8, 130.8, 130.2, 129.8, 128.5, 128.3, 123.6, 121.8, 119.1, 118.2, 117.7, 114.5, 107.5, 105.9, 64.9; IR (neat) ν_{max} 2922, 1678, 1583, 1487, 1248, 752 cm⁻¹; MS (EI) m/z (%) 343 (M⁺ + 1, 100), 209 (6), 135 (3). Anal. Calcd for C₂₁H₁₈N₄O: C, 73.67; H, 5.30; N, 16.36. Found: C, 73.56; H, 5.38; N, 16.21.

(E)-3-(3,3-Bis(1H-pyrazol-1-yl)prop-1-enyl)phenol (4g): light brown solid (122 mg, 46% yield); mp 100–101 °C; $R_f = 0.34$ (2/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCI₃) δ 7.64 (bd, J = 2.0 Hz, 2H), 7.61 (bd, J = 1.2 Hz, 2H), 7.12 (dd, J = 5.2, 0.8 Hz, 1H), 7.09 (d, J = 6.4 Hz, 1H), 6.86 (d, J = 6.4 Hz, 1H), 6.83–6.79 (m, 1H), 6.78 (d, J = 4.8 Hz, 1H), 6.77–6.73 (m, 1H), 6.43 (d, J = 12.8 Hz, 1H), 6.31 (t, J = 2.0 Hz, 2H); ¹³C NMR (101 MHz, CDCI₃) δ 156.6, 140.6, 136.4, 136.0, 129.8, 129.0, 122.2, 119.2, 116.3, 114.0, 106.8, 76.1; IR (KBr) ν_{max} 3142, 2729, 1595, 1392, 1089, 756 cm⁻¹; MS (EI) m/z (%) 268 (M⁺ + 2, 100), 156 (14). Anal. Calcd for C₁₅H₁₄N₄O: C, 67.65; H, 5.30; N, 21.04. Found: C, 67.49; H, 5.26; N, 21.15.

1-(3-Hydroxyphenyl)-2-(1H-pyrazol-1-yl)allyl acetate (**3g**): brown oil (59 mg, 23% yield); $R_{\rm f} = 0.53$ (2/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCI₃) δ 7.59 (bd, J = 2.0 Hz, 1H), 7.58 (bd, J = 1.2 Hz, 1H), 7.18 (t, J = 6.0 Hz, 1H), 6.98 (s, 1H), 6.95 (d, J = 6.4 Hz, 1H), 6.88 (bt, J = 1.6 Hz, 1H), 6.79–6.74 (m, 1H), 6.27 (t, J = 1.6 Hz, 1H), 5.57 (bd, J = 0.8 Hz, 1H), 5.12 (s, 1H), 2.12 (s, 3H), 1.90–1.70 (bs, 1H); ¹³C NMR (101 MHz, CDCI₃) δ 169.6, 156.1, 143.7, 140.6, 138.3, 129.8, 128.2, 119.2, 115.8, 114.3, 106.9, 104.4, 73.0, 21.0; IR (neat) $\nu_{\rm max}$ 3333, 2926, 1747, 1593, 1228, 760 cm⁻¹; MS (EI) m/z (%) 260 (M⁺ + 2, 100), 163 (6). Anal. Calcd for C₁₄H₁₄N₂O₃: C, 65.11; H, 5.46; N, 10.85. Found: C, 65.21; H, 5.41; N, 10.76.

(E)-3-(1,3-Bis(1H-pyrazol-1-yl)allyl)phenol (5g): brown oil (37 mg, 14% yield); $R_f = 0.22$ (2/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 9.35–8.35 (bs, 1H), 7.61 (bd, J = 1.6 Hz, 1H), 7.54 (bd, J = 1.6 Hz, 1H), 7.51 (bd, J = 2.4 Hz, 1H), 7.49 (bd, J = 2.4 Hz, 1H), 7.09 (t, J = 8.0 Hz, 1H), 6.79 (d, J = 14.0 Hz, 1H), 6.66 (t, J = 8.0 Hz, 2H), 6.57 (dd, J = 14.0, 7.2 Hz, 1H), 6.48 (s, 1H), 6.34 (bt, J = 2.0 Hz, 1H), 6.28 (bt, J = 2.0 Hz, 1H), 6.07 (d, J = 7.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 141.3, 139.8, 139.5, 130.8, 129.9, 129.0, 128.7, 118.4, 115.8, 114.6, 114.1, 107.5, 105.9, 64.8; IR (neat) ν_{max} 3146, 2928, 1678, 1601, 1282, 945, 653 cm⁻¹; MS (EI) m/z (%) 268 (M⁺ + 2, 30), 267 (M⁺ + 1, 100), 235 (81). Anal. Calcd for C₁₅H₁₄N₄O: C, 67.65; H, 5.30; N, 21.04. Found: C, 67.48; H, 5.21; N, 21.15.

(E)-1,1'-(3-(3-(tert-Butyldimethylsilyloxy)phenyl)prop-2-ene-1,1diyl)bis(1H-pyrazole) (**4h**): colorless solid (186 mg, 49% yield); mp 62–63 °C; $R_f = 0.53$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (bd, J = 2.4 Hz, 2H), 7.60 (bd, J =1.6 Hz, 2H), 7.19 (t, J = 7.6 Hz, 2H), 7.03 (d, J = 7.6 Hz, 1H), 6.94– 6.86 (m, 2H), 6.79 (dd, J = 8.0, 2.4 Hz, 1H), 6.54 (d, J = 15.6 Hz, 1H), 6.31 (bd, J = 1.6 Hz, 2H), 1.00 (s, 9H), 0.20 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 140.4, 136.4, 135.4, 129.4, 128.5, 122.5, 120.3, 120.1, 118.6, 106.5, 76.0, 25.5, 18.0, -4.5; IR (KBr) ν_{max} 3109, 1595, 1280, 966, 621 cm⁻¹; MS (EI) m/z (%) 381 (M⁺ + 1, 100), 203 (3), 106 (6). Anal. Calcd for C₂₁H₂₈N₄OSi: C, 66.28; H, 7.42; N, 14.72. Found: C, 66.42; H, 7.35; N, 14.61.

1-(3-(tert-Butyldimethylsilyloxy)phenyl)-2-(1H-pyrazol-1-yl)allyl acetate (**3h**): pale yellow oil (78 mg, 21% yield); $R_f = 0.70$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (t, J = 2.4 Hz, 2H), 7.18 (t, J = 7.6 Hz, 1H), 7.06–6.99 (m, 2H), 6.88 (bt, J = 2.4 Hz, 1H), 6.77 (ddd, J = 8.4, 2.4, 0.8 Hz, 1H), 6.26 (t, J = 2.4 Hz, 1H), 5.56 (bd, J = 0.8 Hz, 1H), 5.07 (s, 1H), 2.14 (s, 3H), 0.96 (s, 9H), 0.15 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 155.7, 144.0, 140.6, 138.3, 129.5, 127.9, 120.3, 120.1, 119.0, 106.8, 103.5, 72.9, 25.6, 21.0, 18.2, -4.5; IR (neat) ν_{max} 2957, 1751, 1602, 1226, 750 cm⁻¹; MS (EI) m/z (%) 373 (M⁺ + 1, 100), 235 (9), 203 (9), 171 (3). Anal. Calcd for C₂₀H₂₈N₂O₃Si: C, 64.48; H, 7.58; N, 7.52. Found: C, 64.32; H, 7.63; N, 7.45.

(E)-1,1'-(3-(3-(tert-Butyldimethylsilyloxy)phenyl)prop-1-ene-1,3diyl)bis(1H-pyrazole) (5h): yellow oil (38 mg, 10% yield); $R_{\rm f} = 0.38$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (bd, J = 1.6 Hz, 1H), 7.60 (bd, J = 1.6 Hz, 1H), 7.54 (d, J = 2.4 Hz, 1H), 7.48 (d, J = 2.4 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H), 6.87–6.82 (m, 2H), 6.82–6.78 (m, 1H), 6.68–6.61 (m, 2H), 6.35 (t, J = 2.0 Hz, 1H), 6.31 (t, J = 2.0 Hz, 1H), 6.15 (d, J = 6.8 Hz, 1H), 0.95 (s, 9H), 0.15 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 141.3, 140.3, 139.7, 130.6, 129.8, 128.5, 128.3, 120.1, 119.9, 118.9, 114.7, 107.4, 105.8, 64.9, 25.6, 18.1, -4.5; IR (neat) $\nu_{\rm max}$ 2929, 1676, 1485, 1278, 748 cm⁻¹; MS (EI) m/z (%) 381 (M⁺ + 1, 100), 201 (9), 145 (9), 105 (9). Anal. Calcd for C₂₁H₂₈N₄OSi: C, 66.28; H, 7.42; N, 14.72. Found: C, 66.32; H, 7.51; N, 14.86.

(E)-1,1'-(3-(*A*(*Methoxymethoxy*)*phenyl*)*prop*-2-*ene*-1,1-*diyl*)*bis*-(1*H*-*pyrazole*) (*4i*): pale yallow solid (180 mg, 58% yield); mp 57–58 °C; $R_f = 0.23$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 2.4 Hz, 2H), 7.60 (bd, J = 1.6 Hz, 2H), 7.25 (t, J = 8.0 Hz, 1H), 7.17 (dd, J = 6.4, 1.6 Hz, 1H), 7.10 (bt, J = 2.4 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 6.98 (ddd, J = 8.0, 2.4, 0.8 Hz, 1H), 6.91 (dd, J = 15.6, 6.0 Hz, 1H), 6.56 (dd, J = 16.0, 0.8 Hz, 1H), 6.32 (t, J = 2.0 Hz, 2H), 5.17 (s, 2H), 3.47 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 140.5, 136.5, 135.4, 129.6, 128.6, 123.0, 120.8, 116.7, 114.6, 106.6, 94.3, 76.1, 55.9; IR (KBr) ν_{max} 2955, 1745, 1585, 1018, 756 cm⁻¹; MS (EI) m/z (%) 311 (M⁺ + 1, 100), 269 (6), 227 (3). Anal. Calcd for C₁₇H₁₈N₄O₂: C, 65.79; H, 5.85; N, 18.05. Found: C, 65.58; H, 5.76; N, 18.21.

1-(3-(Methoxymethoxy)phenyl)-2-(1H-pyrazol-1-yl)allyl acetate (**3i**): yellow oil (63 mg, 21% yield); $R_f = 0.41$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (bd, J = 2.4Hz, 1H), 7.58 (bd, J = 1.6 Hz, 1H), 7.28–7.20 (m, 1H), 7.08 (bt, J = 2.0 Hz, 1H), 7.07–7.03 (m, 2H), 6.98 (ddd, J = 8.4, 2.4, 1.2 Hz, 1H), 6.26 (t, J = 2.0 Hz, 1H), 5.56 (bd, J = 1.2 Hz, 1H), 5.13 (s, 2H), 5.09 (s, 1H), 3.45 (s, 3H), 2.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 157.3, 143.9, 140.5, 138.4, 129.5, 127.8, 120.7, 116.0, 115.3, 106.8, 103.6, 94.4, 72.8, 55.9, 21.0; IR (neat) $\nu_{\rm max}$ 2925, 1747, 1588, 1221, 767 cm⁻¹; MS (EI) m/z (%) 303 (M⁺ + 1, 100), 282 (11), 215 (8), 79 (24). Anal. Calcd for C₁₆H₁₈N₂O₄: C, 63.56; H, 6.00; N, 9.27. Found: C, 63.42; H, 6.15; N, 9.31.

Following the general procedure GP-3, 1-(3-acetoxyphenyl)prop-2ynyl acetate (1j; 232 mg, 1.0 mmol), pyrazole (2; 340 mg, 5.0 mmol), and AgNO₃ (16.9 mg, 0.1 mmol) in chlorobenzene (1.0 mL) were heated at 80 °C for 24 h. Finally, the crude mixture was purified by silica gel column chromatography with hexane/ethyl acetate (2/1) as eluent to afford the acetyl deprotected compounds 3g (52 mg) in 20% yield as a brown oil, 4g (135 mg) in 51% yield as a light brown solid, and 5g (29 mg) in 11% yield as a brown oil.

(E)-1,1'-(3-o-Tolylprop-2-ene-1,1-diyl)bis(1H-pyrazole) (**4k**): color-less solid (100 mg, 38% yield); mp 73–74 °C; $R_f = 0.33$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 2.4 Hz, 2H), 7.62 (bd, J = 1.6 Hz, 2H), 7.53 (dd, J = 6.8, 2.4 Hz, 1H), 7.25–7.09 (m, 4H), 6.83 (bd, J = 2.8 Hz, 2H), 6.33 (t, J = 2.0 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 135.9, 134.0, 133.4, 130.3, 128.5, 126.1, 125.9, 123.6, 106.5, 76.2, 19.5; IR (KBr) ν_{max} 3109, 2986, 1510, 1392, 754 cm⁻¹; MS (EI) *m*/*z* (%) 265 (M⁺ + 1, 100), 251 (12). Anal. Calcd for C₁₆H₁₆N₄: C, 72.70; H, 6.10; N, 21.20. Found: C, 72.59; H, 6.18; N, 21.32.

2-(1*H*-Pyrazol-1-yl)-1-o-tolylallyl acetate (**3***k*): yellow oil (69 mg, 27% yield); $R_{\rm f} = 0.57$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 2.4 Hz, 1H), 7.59 (bd, J = 1.6 Hz, 1H), 7.42 (dd, J = 6.8, 2.0 Hz, 1H), 7.27 (s, 1H), 7.24–7.16 (m, 3H), 6.31 (t, J = 2.0 Hz, 1H), 5.54 (s, 1H), 4.90 (s, 1H), 2.43 (s, 3H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 144.0, 140.5, 136.6, 135.0, 130.5, 128.4, 127.4, 126.6, 126.0, 106.8, 104.1, 70.1, 20.8, 19.0; IR (neat) $\nu_{\rm max}$ 3128, 3024, 1745, 1232, 756 cm⁻¹; MS (EI) m/z (%) 257 (M⁺ + 1, 90), 229 (34), 215 (21), 197 (100), 182 (5). Anal. Calcd for C₁₅H₁₆N₂O₂: C, 70.29; H, 6.29; N, 10.93. Found: C, 70.18; H, 6.21; N, 10.85.

(E)-1,1'-(3-o-Tolylprop-1-ene-1,3-diyl)bis(1H-pyrazole) (5k): yellow oil (27 mg, 10% yield); $R_f = 0.27$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (bd, J = 1.6 Hz, 1H), 7.60 (bd, J = 1.6 Hz, 1H), 7.51 (d, J = 2.4 Hz, 1H), 7.37 (d, J = 2.0 Hz, 1H), 7.29–7.18 (m, 3H), 7.17–7.08 (m, 1H), 6.66–6.62 (m, 2H), 6.42 (d, J = 4.8 Hz, 1H), 6.34 (t, J = 2.4 Hz, 1H), 6.29 (t, J = 2.0 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 139.7, 136.5, 136.3, 130.9, 130.1, 128.6, 128.5, 128.4, 127.2, 126.5, 114.8, 107.3, 105.7, 61.9, 19.0; IR (neat) ν_{max} 3024, 2924, 1678,1394, 960, 752 cm⁻¹; MS (EI) m/z (%) 265 (M⁺ + 1, 100), 243 (4), 219 (12), 163 (12), 145 (8). Anal. Calcd for C₁₆H₁₆N₄: C, 72.70; H, 6.10; N, 21.20. Found: C, 72.85; H, 6.04; N, 21.13.

(E)-1,1'-(3-(2-Bromophenyl)prop-2-ene-1,1-diyl)bis(1H-pyrazole) (4I): pale yellow solid (165 mg, 50% yield); mp 74–75 °C; $R_{\rm f}$ = 0.33 (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (bd, J = 2.4 Hz, 2H), 7.60 (bd, J = 1.6 Hz, 2H), 7.57 (dd, J = 8.0, 1.6 Hz, 1H), 7.51 (dd, J = 8.0, 1.2 Hz, 1H), 7.26 (d, J = 4.4 Hz, 1H), 7.23 (d, J = 6.0 Hz, 1H), 7.10 (td, J = 7.6, 1.6 Hz, 1H), 7.00–6.84 (m, 2H), 6.31 (t, J = 2.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 134.9, 134.2, 132.8, 129.8, 128.6, 127.4, 127.3, 125.3, 123.9, 106.6, 75.7; IR (KBr) ν_{max} 3022, 2968, 1514, 1087, 968, 754 cm⁻¹; MS (EI) m/z (%) 331 (M⁺ + 2, 78), 330 (M⁺ + 1, 100), 264 (11), 262 (11). Anal. Calcd for C₁₅H₁₃BrN₄: C, 54.73; H, 3.98; N, 17.02. Found: C, 54.85; H, 3.91; N, 17.15.

1-(2-Bromophenyl)-2-(1H-pyrazol-1-yl)allyl acetate (3I): pale yellow semisolid (64 mg, 20% yield); $R_{\rm f}$ = 0.45 (4/1 hexane/ EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 2.4 Hz, 1H), 7.60 (bs, 1H), 7.58 (d, J = 1.2 Hz, 1H), 7.48 (dd, J = 6.8, 1.6 Hz, 1H), 7.35–7.29 (m, 2H), 7.21 (td, J = 6.8, 1.6 Hz, 1H), 6.33 (t, J = 2.0 Hz, 1H), 5.65 (bd, J = 1.2 Hz, 1H), 4.82 (bt, J = 1.2 Hz, 1H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 142.8, 140.7, 136.1, 133.1, 130.1, 128.4, 127.6, 127.2, 123.9, 107.0, 104.6, 72.3, 20.7; IR (neat) $\nu_{\rm max}$ 3063, 2928, 1747, 1224, 756 cm⁻¹; MS (EI) m/z (%) 323 (M⁺ + 2, 28), 321 (M⁺, 28), 208 (17), 151 (100), 108 (34), 76 (38). Anal. Calcd for C₁₄H₁₃BrN₂O₂: C, 52.36; H, 4.08; N, 8.72. Found: C, 52.25; H, 4.12; N, 8.65.

(E)-1,1'-(3-(2,4-Dichlorophenyl)prop-2-ene-1,1-diyl)bis(1H-pyrazole) (4m): colorless solid (210 mg, 66% yield); mp =107–108 °C; R_f = 0.54 (6/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 2.4 Hz, 2H), 7.60 (bd, J = 1.6 Hz, 2H), 7.50 (dd, J = 8.4, 2.8 Hz, 1H), 7.33 (bt, J = 2.4 Hz, 1H), 7.22 (d, J = 3.2 Hz, 1H), 7.18 (dt, J = 8.4, 2.4 Hz, 1H), 6.94–6.91 (m, 2H), 6.31 (bt, J = 2.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.5, 134.7, 134.0, 131.8, 130.5, 129.4, 128.6, 127.9, 127.2, 125.8, 106.7, 75.8; IR (KBr) ν_{max} 3109, 2962, 1585, 1388, 754 cm⁻¹; MS (EI) m/z (%) 320 (M⁺ + 1, 8), 290 (13), 251 (100), 215 (21), 183 (11), 102 (8). Anal. Calcd for C₁₅H₁₂Cl₂N₄: C, 56.44; H, 3.79; N, 17.55. Found: C, 56.32; H, 3.83; N, 17.41.

1-(2,4-Dichlorophenyl)-2-(1H-pyrazol-1-yl)allyl acetate (**3m**): pale yellow solid (47 mg, 15% yield); mp 57–58 °C; $R_f = 0.57$ (6/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 2.4 Hz, 1H), 7.58 (bd, J = 1.6 Hz, 1H), 7.41 (d, J = 11.2 Hz, 1H), 7.42 (s, 1H), 7.34 (s, 1H), 7.25 (dd, J = 8.4, 2.0 Hz, 1H), 6.32 (bt, J = 2.0 Hz, 1H), 5.60 (bd, J = 1.6 Hz, 1H), 4.88 (bt, J = 1.2 Hz, 1H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 142.6, 140.8, 135.1, 134.6, 133.3, 129.7, 129.3, 127.34, 127.28, 107.2, 104.2, 69.6, 20.7; IR (KBr) ν_{max} 3128, 2932, 1751, 1222, 1026, 754 cm⁻¹; MS (EI) m/z (%) 313 (M⁺ + 2, 67), 311 (M⁺, 100), 289 (41), 253 (41), 251 (61), 216 (14), 102 (14). Anal. Calcd for C₁₄H₁₂Cl₂N₂O₂: C, 54.04; H, 3.89; N, 9.00. Found: C, 54.15; H, 3.81; N, 8.86.

(E)-1,1'-(3-(2,6-Dichlorophenyl)prop-2-ene-1,1-diyl)bis(1H-pyrazole) (4n): colorless solid (162 mg, 51% yield); mp 105–106 °C; $R_f = 0.64$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 2H), 7.60 (s, 2H), 7.33–7.25 (m, 3H), 7.10 (t, J = 7.6 Hz, 1H), 6.96 (dd, J = 16.4, 4.4 Hz, 1H), 6.55 (d, J = 16.0 Hz, 1H), 6.32 (bd, J = 1.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.6, 134.4, 132.5, 131.2, 129.4, 129.0, 128.8, 128.4, 106.6, 75.8; IR (KBr) ν_{max} 3109, 2962, 1582, 1388, 1041, 754 cm⁻¹; MS (EI) m/z (%) 320 (M⁺ + 1, 37), 319 (M⁺, 100), 146 (4), 110 (4). Anal. Calcd for C₁₅H₁₂Cl₂N₄: C, 56.44; H, 3.79; N, 17.55. Found: C, 56.51; H, 3.72; N, 17.41.

1-(2,6-Dichlorophenyl)-2-(1H-pyrazol-1-yl)allyl acetate (**3n**): colorless solid (37 mg, 12% yield); mp 86–87 °C; $R_f = 0.57$ (6/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (bdd, J = 8.4, 1.6 Hz, 1H), 7.65 (bs, 1H), 7.60 (bd, J = 2.0 Hz, 1H), 7.30 (s, 1H), 7.28 (s, 1H), 7.13 (t, J = 8.0 Hz, 1H), 6.88 (d, J = 9.6 Hz, 1H), 6.34 (bt, J = 2.0 Hz, 1H), 5.74 (t, J = 8.8 Hz, 1H), 2.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 141.6, 135.4, 134.7, 130.5, 129.5, 129.2, 128.0, 113.3, 106.9, 68.8, 20.9; IR (KBr) ν_{max} 2924, 1730, 1244, 761 cm⁻¹; MS (EI) m/z (%) 313 (M⁺ + 2, 20), 311 (M⁺, 35), 289 (17), 251 (100), 203 (100), 183 (41), 130 (17), 102 (100). Anal. Calcd for C₁₄H₁₂Cl₂N₂O₂: C, 54.04; H, 3.89; N, 9.00. Found: C, 53.95; H, 3.94; N, 9.12.

(E)-1,1'-(3-(Naphthalen-1-yl)prop-2-ene-1,1-diyl)bis(1H-pyrazole) (40): colorless solid (144 mg, 48% yield); mp 85–86 °C; $R_f = 0.38$ (4/ 1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCI₃) δ 8.01–7.94 (m, 1H), 7.89–7.81 (m, 2H), 7.75 (bd, J = 2.4 Hz, 2H), 7.72–7.65 (m, 3H), 7.54–7.44 (m, 3H), 7.35 (dd, J = 10.4, 4.4 Hz, 2H), 6.97 (dd, J = 16.0, 5.6 Hz, 1H), 6.37 (bt, J = 2.0 Hz, 2H); ¹³C NMR (101 MHz, CDCI₃) δ 140.5, 133.4, 132.9, 132.6, 130.9, 129.0, 128.6, 128.5, 126.3, 125.9, 125.6, 125.4, 124.4, 123.3, 106.7, 76.1; IR (KBr) ν_{max} 3117, 3057, 1512, 1390, 966, 754 cm⁻¹; MS (EI) m/z (%) 301 (M⁺ + 1, 100), 287 (6), 255 (4). Anal. Calcd for C₁₉H₁₆N₄: C, 75.98; H, 5.37; N, 18.65. Found: C, 75.86; H, 5.31; N, 18.56.

1-(Naphthalen-1-yl)-2-(1H-pyrazol-1-yl)allyl acetate (**30**): colorless solid (67 mg, 23% yield); mp 92–93 °C; $R_f = 0.56$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.4 Hz, 1H), 7.93 (s, 1H), 7.87 (dd, J = 11.6, 8.4 Hz, 2H), 7.71–7.64 (m, 2H), 7.62 (bd, J = 1.6 Hz, 1H), 7.59–7.49 (m, 2H), 6.47 (t, J = 7.6 Hz, 1H), 6.31 (bt, J = 1.6 Hz, 1H), 5.62 (bd, J = 1.2 Hz, 1H), 4.95 (s, 1H), 2.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 143.9, 140.7, 133.7, 132.4, 130.9, 129.4, 128.7, 127.4, 126.7, 125.9, 125.1, 123.4, 107.0, 104.6, 70.0, 20.9; IR (KBr) ν_{max} 3065, 2930, 1736, 1224, 773 cm⁻¹; MS (EI) *m/z* (%) 293 (M⁺ + 1, 100). Anal. Calcd for C₁₈H₁₆N₂O₂: C, 73.95; H, 5.52; N, 9.58. Found: C, 74.05; H, 5.48; N, 9.51.

(E)-1,1'-(3-(Naphthalen-1-yl)prop-1-ene-1,3-diyl)bis(1H-pyrazole) (50): pale yellow solid (48 mg, 16% yield); mp 95–96 °C; $R_f = 0.29$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 8.00–7.93 (m, 1H), 7.92–7.83 (m, 2H), 7.63 (d, J = 12.8Hz, 2H), 7.53–7.41 (m, 5H), 7.33 (bd, J = 2.0 Hz, 1H), 7.02 (d, J = 5.6 Hz, 1H), 6.82 (dd, J = 14.0, 6.0 Hz, 1H), 6.63 (d, J = 14.0 Hz, 1H), 6.32 (bt, J = 2.0 Hz, 1H), 6.26 (bt, J = 2.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 139.7, 133.9, 133.8, 130.9, 130.2, 129.5, 128.84, 128.77, 128.5, 126.9, 126.0, 125.7, 125.2, 122.9, 115.0, 107.2, 105.9, 61.7; IR (KBr) ν_{max} 3051, 2924, 1678, 1394, 958, 754 cm⁻¹; MS (EI) m/z (%) 301 (M⁺ + 1, 100), 282 (11). Anal. Calcd for C₁₉H₁₆N₄: C, 75.98; H, 5.37; N, 18.65. Found: C, 75.85; H, 5.32; N, 18.71.

(E)-1,1'-(3-(Thiophen-2-yl)prop-2-ene-1,1-diyl)bis(1H-pyrazole) (4p): brown solid (141 mg, 55% yield); mp 63–64 °C; $R_f = 0.35$ (6/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (bd, J = 2.4 Hz, 2H), 7.59 (bd, J = 1.6 Hz, 2H), 7.18 (dd, J = 11.2, 4.8 Hz, 2H), 6.99 (d, J = 3.6 Hz, 1H), 6.93 (t, J = 4.4 Hz, 1H), 6.69 (d, J = 5.2 Hz, 1H), 6.67 (s, 1H), 6.29 (bt, J = 2.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.3, 139.6, 128.5, 128.4, 127.7, 127.3, 125.8, 121.4, 106.5, 75.6; IR (KBr) ν_{max} 3107, 1649, 1514, 1390, 1087, 960, 754 cm⁻¹; MS (EI) m/z (%) 257 (M⁺ + 1, 100), 243 (3), 211 (30), 167 (16), 97 (6). Anal. Calcd for C₁₃H₁₂N₄S: C, 60.91; H, 4.72; N, 21.86. Found: C, 60.75; H, 4.81; N, 21.75.

2-(1*H*-Pyrazol-1-yl)-1-(thiophen-2-yl)allyl acetate (**3***p*): brown oil (30 mg, 12% yield); $R_{\rm f} = 0.56$ (6/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (bd, J = 2.0 Hz, 1H), 7.61 (s, 1H), 7.34 (s, 1H), 7.27 (bd, J = 3.2 Hz, 1H), 7.09 (bd, J = 3.2 Hz, 1H), 6.93 (t, J = 4.0 Hz, 1H), 6.31 (bs, 1H), 5.57 (s, 1H), 5.27 (s, 1H), 2.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 143.8, 140.7, 139.9, 128.0, 127.3, 126.8, 126.3, 107.0, 102.9, 68.8, 21.0; IR (neat) $\nu_{\rm max}$ 2926, 1747, 1653, 1224, 1024, 754 cm⁻¹; MS (EI) m/z (%) 247 (M⁺–1, 100), 244 (54), 220 (30), 186 (6), 136 (3). Anal. Calcd for C₁₂H₁₂N₂O₂S: C, 58.05; H, 4.87; N, 11.28. Found: C, 58.12; H, 4.81; N, 11.35.

(E)-1,1'-(3-(Thiophen-2-yl)prop-1-ene-1,3-diyl)bis(1H-pyrazole) (**5p**): brown oil (18 mg, 7% yield); $R_f = 0.20$ (6/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (bd, J = 1.6 Hz, 1H), 7.60 (bd, J = 1.6 Hz, 1H), 7.55 (d, J = 2.4 Hz, 1H), 7.50 (d, J = 2.4 Hz, 1H), 7.32 (dd, J = 5.2, 1.2 Hz, 1H), 7.06 (bd, J = 3.6 Hz, 1H), 7.01 (dd, J = 5.2, 3.6 Hz, 1H), 6.92 (d, J = 13.6 Hz, 1H), 6.67 (dd, J = 14.0, 6.8 Hz, 1H), 6.43 (d, J = 7.2 Hz, 1H), 6.36 (bt, J = 2.0 Hz, 1H), 6.31 (bt, J = 2.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 141.5, 139.8, 130.3, 128.5, 128.1, 127.0, 126.5, 126.3, 114.7, 107.5, 106.1, 60.7; IR (neat) ν_{max} 3107, 2924, 1678, 1520, 1394, 1089, 752 cm⁻¹; MS (EI) m/z (%) 257 (M⁺ + 1, 100), 239 (6), 215 (6), 181 (9), 157 (12), 133 (12). Anal. Calcd for C₁₃H₁₂N₄S: C, 60.91; H, 4.72; N, 21.86. Found: C, 61.06; H, 4.68; N, 21.95.

(E)-4-(3,3-Bis(1H-pyrazol-1-yl)prop-1-enyl)benzaldehyde (4q): pale yellow solid (150 mg, 54% yield); mp 104–105 °C; $R_f = 0.29$ (3/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 2.4 Hz, 2H), 7.61 (bd, J = 1.6 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.21 (dd, J =5.6, 1.2 Hz, 1H), 7.06 (dd, J = 16.0, 6.0 Hz, 1H), 6.61 (d, J = 16.0 Hz, 1H), 6.34 (bd, J = 2.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 191.4, 140.7, 140.5, 136.0, 134.0, 129.9, 128.6, 127.4, 126.1, 106.8, 75.7; IR (KBr) ν_{max} 2926, 1691, 1390, 1209, 1089, 765, 625 cm⁻¹; MS (EI) m/z(%) 279 (M⁺ + 1, 100), 233 (3), 212 (5). Anal. Calcd for C₁₆H₁₄N₄O: C, 69.05; H, 5.07; N, 20.13. Found: C, 69.18; H, 5.15; N, 20.06.

1-(4-Formylphenyl)-2-(1H-pyrazol-1-yl)allyl acetate (**3q**): pale yellow oil (51 mg, 19% yield); R_f = 0.61 (3/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.63–7.55 (m, 4H), 7.17 (s, 1H), 6.26 (bt, *J* = 2.0 Hz, 1H), 5.51 (bd, *J* = 1.2 Hz, 1H), 5.12 (s, 1H), 2.15 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.6, 169.1, 143.6, 140.7, 136.2, 129.8, 127.8, 127.7, 107.1, 103.1, 72.5, 20.9; IR (neat) ν_{max} 2928, 1741, 1608, 1226, 1032, 758 cm⁻¹; MS (EI) *m*/*z* (%) 271 (M⁺ + 1, 100), 240 (5). Anal. Calcd for C₁₅H₁₄N₂O₃: C, 66.66; H, 5.22; N, 10.36. Found: C, 66.48; H, 5.32; N, 10.25.

The Journal of Organic Chemistry

(E)-1,1'-(3-(4-(1,3-Dioxan-2-yl)phenyl)prop-2-ene-1,1-diyl)bis(1H-pyrazole) (**4***r*): colorless solid (145 mg, 43% yield); mp 120–121 °C; $R_f = 0.25$ (3/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (bd, J = 1.6 Hz, 2H), 7.59 (bs, 2H), 7.46 (bd, J = 6.8 Hz, 2H), 7.41 (bd, J = 6.4 Hz, 2H), 7.20 (dd, J = 5.2, 1.2 Hz, 1H), 6.91 (dd, J = 12.8, 4.8 Hz, 1H), 6.56 (d, J = 12.8 Hz, 1H), 6.29 (bd, J = 1.6 Hz, 2H), 5.47 (s, 1H), 4.23 (bdd, J = 8.8, 3.6 Hz, 2H), 3.94 (t, J = 10.0 Hz, 2H), 2.25–2.12 (m, 1H), 1.40 (bd, J = 10.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 140.2, 139.0, 135.2, 135.0, 128.5, 126.7, 126.1, 122.7, 106.4, 100.8, 75.8, 67.0, 25.4; IR (KBr) ν_{max} 3101, 2962, 1392, 1105, 758 cm⁻¹; MS (EI) m/z (%) 337 (M⁺ + 1, 100), 323 (3). Anal. Calcd for C₁₉H₂₀N₄O₂: C, 67.84; H, 5.99; N, 16.66. Found: C, 67.71; H, 5.91; N, 16.58.

1-(4-(1,3-Dioxan-2-yl)phenyl)-2-(1H-pyrazol-1-yl)allyl acetate (**3***r*): colorless solid (66 mg, 20% yield); mp 119–120 °C; $R_f = 0.44$ (3/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCI₃) δ 7.56 (bt, J = 2.0 Hz, 2H), 7.49–7.42 (m, 4H), 7.11 (s, 1H), 6.24 (t, J = 2.0 Hz, 1H), 5.56 (s, 1H), 5.48 (s, 1H), 5.09 (s, 1H), 4.25 (dd, J = 8.8, 4.0 Hz, 2H), 3.97 (td, J = 9.6, 1.6 Hz, 2H), 2.26–2.16 (m, 1H), 2.12 (s, 3H), 1.44 (d, J = 10.8 Hz, 1H); ¹³C NMR (125 MHz, CDCI₃) δ 169.2, 143.9, 140.5, 138.9, 137.4, 127.8, 127.2, 126.2, 106.8, 103.3, 101.0, 72.8, 67.3, 25.6, 20.9; IR (KBr) ν_{max} 3130, 2974, 1738, 1244, 763 cm⁻¹; MS (EI) m/z (%) 329 (M⁺ + 1, 100), 223 (11), 121 (3). Anal. Calcd for C₁₈H₂₀N₂O₄: C, 65.84; H, 6.14; N, 8.53. Found: C, 65.72; H, 6.21; N, 8.65.

(E)-1,1'-(3-(4-(1,3-Dioxan-2-yl)phenyl)prop-1-ene-1,3-diyl)bis(1H-pyrazole) (**5***r*): pale yellow solid (47 mg, 14% yield); mp 105–106 °C; R_f = 0.17 (3/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (bd, *J* = 1.2 Hz, 1H), 7.59 (bd, *J* = 1.2 Hz, 1H), 7.53–7.48 (m, 3H), 7.43 (d, *J* = 1.6 Hz, 1H), 7.25 (d, *J* = 6.4 Hz, 2H), 6.77 (dd, *J* = 11.2, 0.4 Hz, 1H), 6.68 (dd, *J* = 11.2, 5.2 Hz, 1H), 6.34 (bt, *J* = 2.0 Hz, 1H), 6.29 (bt, *J* = 1.6 Hz, 1H), 6.23 (d, *J* = 5.6 Hz, 1H), 5.51 (s, 1H), 4.26 (dd, *J* = 8.4, 3.6 Hz, 2H), 3.99 (td, *J* = 10.0, 2.0 Hz, 2H), 2.28–2.16 (m, 1H), 1.45 (d, *J* = 10.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 141.3, 139.6, 139.1, 138.9, 130.5, 128.5, 128.4, 127.2, 126.5, 114.8, 107.3, 105.8, 100.9, 67.3, 64.8, 25.6; IR (KBr) ν_{max} 3111, 2924, 1676, 1392, 1103, 748 cm⁻¹; MS (EI) *m*/*z* (%) 337 (M⁺ + 1, 100), 323 (3). Anal. Calcd for C₁₉H₂₀N₄O₂: C, 67.84; H, 5.99; N, 16.66. Found: C, 67.92; H, 6.08; N, 16.75.

(E)-1,1'-(3-(Benzo[d][1,3]dioxol-5-yl)prop-2-ene-1,1-diyl)bis(1H-pyrazole) (4s): light brown solid (147 mg, 50% yield); mp 115–116 °C; $R_f = 0.43$ (6/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (bd, J = 2.0 Hz, 2H), 7.59 (bd, J = 1.6 Hz, 2H), 7.13 (d, J = 6.0 Hz, 1H), 6.98 (bd, J = 1.2 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 6.78–6.70 (m, 2H), 6.50 (d, J = 16.0 Hz, 1H), 6.31 (bt, J = 2.0 Hz, 2H), 5.95 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.2, 148.1, 140.4, 135.3, 129.5, 128.5, 122.3, 120.7, 108.3, 106.6, 106.1, 101.2, 76.3; IR (KBr) ν_{max} 3103, 2901, 1651, 1448, 1255, 1037, 761, 625 cm⁻¹; MS (EI) *m*/*z* (%) 294 (M⁺, 24), 293 (M⁺–1, 100). Anal. Calcd for C₁₆H₁₄N₄O₂: C, 65.30; H, 4.79; N, 19.04. Found: C, 65.21; H, 4.71; N, 19.15.

1-(*Benzo*[*d*][1,3]*dioxol-5-yl*)-2-(1*H-pyrazol-1-yl*)*allyl acetate* (**3s**): brown oil (29 mg, 10% yield); $R_f = 0.64$ (6/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (bd, *J* = 2.8 Hz, 1H), 7.57 (bd, *J* = 1.6 Hz, 1H), 6.99 (s, 1H), 6.96–6.90 (m, 2H), 6.73 (d, *J* = 8.4 Hz, 1H), 6.26 (bt, *J* = 2.0 Hz, 1H), 5.92 (s, 2H), 5.53 (s, 1H), 5.12 (s, 1H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 147, 77, 147.76, 144.1, 140.5, 130.6, 127.7, 121.4, 108.2, 107.8, 106.8, 102.8, 101.2, 72.8, 21.0; IR (neat) ν_{max} 2924, 1743, 1228, 756, 696 cm⁻¹; MS (EI) *m*/*z* (%) 287 (M⁺ + 1, 100), 269 (6), 241 (9), 229 (14), 197 (8). Anal. Calcd for C₁₅H₁₄N₂O₄: C, 62.93; H, 4.93; N, 9.79. Found: C, 62.85; H, 4.88; N, 9.65.

(E)-1,1'-(3-(Benzo[d][1,3]dioxol-5-yl)prop-1-ene-1,3-diyl)bis(1Hpyrazole) (55): brown oil (50 mg, 17% yield); $R_f = 0.18$ (6/1 hexane/ EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (bd, J= 1.6 Hz, 1H), 7.60 (bd, J = 1.2 Hz, 1H), 7.56 (bd, J = 2.0 Hz, 1H), 7.48 (bd, J = 2.0 Hz, 1H), 6.83 (d, J = 11.6 Hz, 1H), 6.81–6.75 (m, 2H), 6.74 (bd, J = 1.2 Hz, 1H), 6.64 (dd, J = 11.2, 5.6 Hz, 1H), 6.36 (bt, J = 1.6 Hz, 1H), 6.31 (bt, J = 1.6 Hz, 1H), 6.12 (d, J = 5.6 Hz, 1H), 5.97–5.95 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 147.6, 141.3, 139.7, 132.6, 130.4, 128.4, 128.3, 120.9, 115.0, 108.4, 107.8, 107.4, 105.8, 101.3, 64.8; IR (neat) ν_{max} 2924, 1678, 1248, 1039, 754 cm⁻¹; MS (EI) m/z (%) 295 (M⁺ + 1, 100), 252 (41), 204 (14). Anal. Calcd for C₁₆H₁₄N₄O₂: C, 65.30; H, 4.79; N, 19.04. Found: C, 65.48; H, 4.85; N, 18.89.

1-Phenyl-3-(1H-pyrazol-1-yl)but-3-en-2-yl acetate (**3t**): colorless oil (49 mg, 19% yield); $R_{\rm f} = 0.57$ (19/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.67 (s, 1H), 7.48–7.12 (m, 5H), 6.38 (s, 1H), 6.22 (s, 1H), 5.33 (s, 1H), 4.95 (s, 1H), 3.23–3.13 (m, 1H), 3.06–2.90 (m, 1H), 2.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 144.2, 140.8, 136.7, 129.5, 128.2, 127.8, 126.7, 107.0, 102.3, 39.6, 21.0; IR (neat) $\nu_{\rm max}$ 3030, 2926, 1747, 1651, 1232, 1045, 754 cm⁻¹; MS (EI) m/z (%) 257 (M⁺ + 1, 100), 199 (8), 167 (14), 139 (5). Anal. Calcd for C₁₅H₁₆N₂O₂: C, 70.29; H, 6.29; N, 10.93. Found: C, 70.18; H, 6.22; N, 10.88.

(Z)-1-Phenyl-4-(1H-pyrazol-1-yl)but-3-en-2-yl acetate (**3t**'). color-less oil (65 mg, 25% yield); $R_{\rm f}$ = 0.45 (19/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.50 (s, 1H), 7.36–7.18 (m, 5H), 6.74 (d, *J* = 9.6 Hz, 1H), 6.56 (s, 1H), 6.34 (s, 1H), 5.14 (t, *J* = 8.8 Hz, 1H), 3.24–3.15 (m, 1H), 3.05–2.98 (m, 1H), 1.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 141.4, 137.2, 130.3, 129.6, 128.1, 126.4, 125.7, 117.2, 106.6, 71.5, 40.4, 21.1; IR (neat) $\nu_{\rm max}$ 3028, 2924, 1736, 1521, 1236, 738 cm⁻¹; MS (EI) *m/z* (%) 257 (M⁺ + 1, 100), 223 (14), 211 (27), 167 (14), 97 (11), 91 (11). Anal. Calcd for C₁₅H₁₆N₂O₂: C, 70.29; H, 6.29; N, 10.93. Found: C, 70.35; H, 6.23; N, 10.99.

1-(Naphthalen-1-yl)-2-(1H-pyrazol-1-yl)propan-1-ol (7): pale yellow oil (45 mg, 89% yield); $R_f = 0.61$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.59 (bd, J = 1.6 Hz, 2H), 7.57–7.47 (m, 4H), 7.32 (t, J = 8.0 Hz, 2H), 7.13–7.06 (m, 4H), 6.12 (t, J = 2.4 Hz, 2H), 4.77–4.67 (m, 2H), 3.70 (dd, J = 14.0, 7.2 Hz, 2H), 3.46 (dd, J = 13.6, 6.8 Hz, 2H), 1.62 (s, 3H), 1.61 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 134.0, 133.8, 131.8, 128.8, 127.8, 127.5, 127.4, 126.1, 125.5, 125.3, 123.4, 104.5, 58.6, 40.9, 20.6; IR (neat) ν_{max} 3059, 2934, 1745, 1396, 1045, 750, 623 cm⁻¹; MS (EI) *m*/*z* (%) 253 (M⁺ + 1, 100), 207 (3), 184 (3), 168 (3). Anal. Calcd for C₁₆H₁₆N₂O: C, 76.16; H, 6.39; N, 11.10. Found: C, 76.28; H, 6.31; N, 11.25.

1,1'-(3-Phenylpropane-1,1-diyl)bis(1H-pyrazole) (8): colorless solid (99 mg, 98% yield); mp 69–70 °C; $R_f = 0.35$ (4/1 hexane/EtOAc) [silica, UV and I₂]; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (bd, J = 2.4 Hz, 2H), 7.56 (bd, J = 1.6 Hz, 2H), 7.31 (bt, J = 7.6 Hz, 2H), 7.26–7.19 (m, 1H), 7.15 (bd, J = 1.6 Hz, 1H), 7.14 (s, 1H), 6.33 (t, J = 7.6 Hz, 1H), 6.28 (bt, J = 2.0 Hz, 2H), 2.95 (q, J = 7.2 Hz, 2H), 2.58 (t, J = 7.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 139.6, 128.6, 128.5, 128.4, 126.4, 106.4, 74.5, 35.1, 31.1. IR (KBr) ν_{max} 3109, 2928, 1514, 1390, 1091, 752, 623 cm⁻¹; MS (EI) m/z (%) 253 (M⁺ + 1, 100), 209 (3), 146 (3). Anal. Calcd for C₁₅H₁₆N₄: C, 71.40; H, 6.39; N, 22.21. Found: C, 71.56; H, 6.31; N, 22.15.

Synthesis of Pd Complex **9** from **40**: pale yellow solid (127 mg, 89% yield); mp 275–276 °C dec; ¹H NMR (400 MHz, DMSO- d_6) δ 8.46 (bd, J = 2.4 Hz, 2H), 8.25 (bd, J = 4.0 Hz, 1H), 8.22 (d, J = 8.8 Hz, 1H), 8.08 (bd, J = 1.2 Hz, 2H), 8.03–7.89 (m, 3H), 7.67–7.45 (m, 4H), 7.10 (bs, 1H), 6.68 (s, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 144.4, 135.3, 133.6, 132.1, 131.1, 130.0, 129.0, 127.3, 126.7, 126.2, 125.3, 124.2, 108.1, 73.8; IR (KBr) ν_{max} 3145, 3123, 2931, 1408, 1282, 1205, 1086, 947, 860, 783, 613 cm⁻¹. Anal. Calcd for C₁₉H₁₆Cl₂N₄Pd: C, 47.77; H, 3.38; N, 11.73. Found: C, 47.86; H, 3.32; N, 11.65.

Synthesis of Pd Complex 10 from 8: pale yellow solid (150 mg, 88% yield); mp 254–256 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.23 (s, 2H), 8.00 (s, 2H), 7.36–7.26 (m, 3H), 7.24–7.16 (m, 4H), 6.58 (s, 1H), 3.52 (bs, 2H), 2.35 (bs, 2H); ¹³C NMR (101 MHz, DMSO- d_6) δ 144.3, 139.3, 135.5, 129.1, 128.6, 126.9, 107.7, 73.3, 39.3 (merged in DMSO- d_6 peaks), 30.6; IR (KBr) ν_{max} 3139, 3123, 3013, 2969, 2926, 1408, 1298, 1216, 1068, 772, 756, 695 cm⁻¹; HRMS calcd for C₁₅H₁₆Cl₂N₄Pd [M + Na]⁺ 450.9685, found 450.9685.

General Procedure for Suzuki–Miyaura Cross Coupling Reaction GP-4. A 25 mL Schlenk tube was charged with aryl halides (11; 1.0 equiv), arylboronic acids (12; 2.0 equiv), K_2CO_3 (2.0 equiv), and palladium complex 9/10 (0.1 mol %) in H_2O . The reaction mixture was stirred at 80 °C for 24 h. After the mixture was cooled to room temperature, it was diluted with water and extracted with EtOAc. The organic layer was separated, dried over Na_2SO_4 , and concentrated under vacuum. The crude residue was purified using column chromatography on silica gel. Analytical and spectral data of cross-coupled products 13 exactly match with the reported values. 4-Methoxybiphenyl (13aa):¹⁶ 536 mg, 97% yield. 4-(Trifluoromethyl)-biphenyl (13ba):¹⁷ 480 mg, 72% yield. 2-Methylbiphenyl (13ca):¹⁸ 473 mg, 94% yield. 2-Phenylthiophene (13da):¹⁰ 385 mg, 80% yield. 4-Fluoro-4'-methoxybiphenyl (13ac):¹⁷ 511 mg, 86% yield. 1-(4-Methoxyphenyl)naphthalene (13ad):²⁰ 674 mg, 96% yield.

ASSOCIATED CONTENT

S Supporting Information

Figures giving ¹H and ¹³C NMR spectra of new compounds and tables and CIF files giving crystallographic details of compounds **4n**, **3o**, **5o**, and **9**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail for A.K.S.: akssc@uohyd.ernet.in and akhilchemistry12@gmail.com.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the UoH and ACRHEM for financial support. M.B. and M.R.K. thank the CSIR of India, for fellowships. We are grateful to Ms. Priyanka, Mr. Prabagar B, and the support of the UGC-NWC. Dedicated to Professor M. Periasamy, University of Hyderabad, India, on the occasion of his 60th birthday.

REFERENCES

(1) For selected examples of propargyl substitution reactions see: (a) Ohri, R. V.; Radosevich, A. T.; Hrovat, K. J.; Musich, C.; Huang, D.; Holman, T. R.; Toste, F. D. Org. Lett. 2005, 7, 2501. For propargyl esters in carbocyclization reactions, see: (b) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (c) Markham, J. P.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 9708. (d) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802. (e) Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442. (f) Zhang, G.; Catalano, V. J.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 11358. For propargyl esters and alcohols in the synthesis of heterocycles see: (g) Shapiro, N. D.; Shi, Y.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 11654. (h) Pan, Y.-M.; Zheng, F.-J.; Lin, H.-X.; Zhan, Z.-P. J. Org. Chem. 2009, 74, 3148. (i) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550. (j) Gao, X.; Pan, Y.-M.; Lin, M.; Chen, L.; Zhan, Z.-P. Org. Biomol. Chem. 2010, 8, 3259. (k) Debleds, O.; Gayon, E.; Ostaszuk, E.; Vrancken, E.; Champagne, J.-M. Chem. Eur. J. 2010, 16, 12207. For a review on propargyl alcohols and their derivatives see: (1) Bauer, E. B. Synthesis 2012, 44, 1131. For propargyl esters and alcohols in the synthesis of enes, enynes, and allenes see: (m) Wang, S.; Zhang, L. J. Am. Chem. Soc. 2006, 128, 8414. (n) Yan, W.; Ye, X.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Org. Lett. 2012, 14, 2358. (o) Xu, C.-F.; Xu, M.; Yang, L.-Q.; Li, C.-Y. J. Org. Chem. 2012, 77, 3010.

(2) (a) Tsuchimoto, T.; Aoki, K.; Wagatsuma, T.; Suzuki, Y. *Eur. J. Org. Chem.* **2008**, 4035. (b) Yan, W.; Wang, Q.; Chen, Y.; Petersen, J. L.; Shi, X. *Org. Lett.* **2010**, *12*, 3308. (c) Yan, W.; Ye, X.; Weise, K.; Petersen, J. L.; Shi, X. *Chem. Commun.* **2012**, *48*, 3521.

(3) (a) Ghosh, N.; Nayak, S.; Sahoo, A. K. J. Org. Chem. 2011, 76, 500. (b) Bhanuchandra, M.; Kuram, M. R.; Sahoo, A. K. Org. Biomol. Chem. 2012, 10, 3538.

(4) Pavlov, P. T.; Goleneva, A. F.; Lesnov, A. E.; Prokhorova, T. S. *Khim. Farm. Zh.* **1998**, 32, 28.

(5) Pettinari, C.; Pettinari, R. Coord. Chem. Rev. 2005, 249, 663.

(6) As catalysts in organic transformation: (a) Field, L. D.; Messerle, B. A.; Rehr, M.; Soler, L. P.; Hambley, T. W. Organometallics **2003**, *22*, 2387. (b) Burling, S.; Field, L. D.; Messerle, B. A.; Turner, P. Organometallics **2004**, *23*, 1714. (c) Otero, A.; Fernández-Baeza, J.; Antiñolo, A.; Tejeda, J.; Lara-Sánchez, A. Dalton Trans. **2004**, 1499. (d) Carrión, M. C.; Jalón, F. A.; Manzano, B. R.; Rodríguez, A. M.; Sepúlveda, F.; Maestro, M. Eur. J. Inorg. Chem. **2007**, 3961. (e) Kealey, S.; Miller, P. W.; Long, N. J.; Plisson, C.; Martarello, L.; Gee, A. D. Chem. Commun. **2009**, 3696.

(7) (a) Wheate, N. J.; Evison, B. J.; Herlt, A. J.; Phillips, D. R.; Collins, J. G. *Dalton Trans.* **2003**, 3486. (b) Collins, J. G.; Wheate, N. J. J. Inorg. Biochem. **2004**, 98, 1578.

(8) The reaction of propargyl O-pivolate with pyrazole produced 3 (47%), 4 (39%), and 5 (6%), on the basis of GC-MS analysis. A reverse trend of product selectivity was observed when O-Boc-protected propargyl alcohols reacted with pyrazole; 3 (16%), 4 (21%), and 5 (52%).

(9) Kumar, M. P.; Liu, R.-S. J. Org. Chem. 2006, 71, 4951.

(10) (a) Kocienski, P. J. *Protecting Group*, 3rd ed.; Thieme: Stuttgart, Germany, 2005. (b) Green, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 4th ed.; Wiley: New York, 2007.

(11) See the Supporting Information.

(12) Hashmi, A. S. K.; Rudolph, M.; Bats, J. W.; Frey, W.; Rominger, F.; Oeser, T. *Chem. Eur. J.* **2008**, *14*, 6672.

(13) (a) Regina, G. L.; D'Auria, F. D.; Tafi, A.; Piscitelli, F.; Olla, S.; Caporuscio, F.; Nencioni, L.; Cirilli, R.; Torre, F. L.; De Melo, N. R.; Kelly, S. L.; Lamb, D. C.; Artico, M.; Botta, M.; Palamara, A. T.; Silvestri, R. J. Med. Chem. 2008, 51, 3841. (b) Bosak, A.; Smilović, I. G.; Šinko, G.; Vinković, V.; Kovarik, Z. J. Med. Chem. 2012, 55, 6716. (14) (a) Nájera, C.; Gil-Moltó, J.; Karlström, S.; Falvello, L. R. Org. Lett. 2003, 5, 1451. (b) Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 2419. (c) Franzén, R.; Xu, Y. Can. J. Chem. 2005, 83, 266. (d) Liu, C.; Ni, Q.; Hu, P.; Qiu, J. Org. Biomol. Chem. 2011, 9, 1054. (e) Luo, Q.-L.; Tan, J.-P.; Li, Z.-F.; Nan, W.-H.; Xiao, D.-R. J. Org. Chem. 2012, 77, 8332. (f) Mondal, M.; Bora, U. Green Chem. 2012, 14, 1873. (g) Wan, J.-P.; Wang, C.; Zhoua, R.; Liu, Y. RSC Advances 2012, 2, 8789. (h) Enderlin, G.; Sartori, G.; Herve, G.; Len, C. Tetrahedron Lett. 2013, 54, 3374.

(15) (a) Müller, T. J. J. Eur. J. Org. Chem. 2001, 2021. (b) Robinson,
R. S.; Dovey, M. C.; Gravestock, D. Eur. J. Org. Chem. 2005, 505.
(c) Marion, N.; Carlqvist, P.; Gealageas, R.; Frémont, P. D.; Maseras,
F.; Nolan, S. P. Chem. Eur. J. 2007, 13, 6437. (d) Gayon, E.; Szymczyk,
M.; Gérard, H.; Vrancken, E.; Campagne, J.-M. J. Org. Chem. 2012, 77, 9205.

(16) Nakao, Y.; Imanaka, H.; Sahoo, A. K.; Yada, A.; Hiyama, T. J. Am. Chem. Soc. **2005**, 127, 6952.

(17) Ackermann, L.; Gschrei, C. J.; Althammer, A.; Riederer, M. Chem. Commun. 2006, 1419.

(18) Kitamura, Y.; Sakurai, A.; Udzu, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. *Tetrahedron* **2007**, *63*, 10596.

(19) Moore, L. R.; Shaughnessy, K. H. Org. Lett. 2004, 6, 225.

(20) Molander, G. A.; Beaumard, F. Org. Lett. 2010, 12, 4022.

(21) We did not detect the allene intermediate A when 1a and 2a (1/

1 ratio) were reacted under the catalytic conditions for 24 h; rather, the products 3a (6%) and 4a (40%) were isolated.

(22) The activation of allene and pyrazole N by $AgNO_3$ would lead to the formation of major product 4.

